Submodularity-Inspired Data Selection for Goal-Oriented Chatbot Training Based on Sentence Embeddings

Mladen Dimovski¹, Claudiu Musat², Vladimir Ilievski¹, Andreea Hossmann², Michael Baeriswyl² ¹IC School, EPFL, Switzerland ²Artificial Intelligence Group, Swisscom

BAD

CHOICE

GOOD

CHOICE

Slot Filling	Data Availability	Contributions
Are there any French restaurants in downtown Toronto ?	 Existing BiLSTM models perform reasonably well if given enough training data What if we can afford to label only small amount of data ? 	We show that the space of raw, unlabeled sentences contains information that we can use to choose the sentences to label
BiLSTM model	MAINIDEA	We create a submodularity-inspired ranking

Can you propose a good restaurant serving beef in the city center?

What is the best rated chinese restaurant in Lausanne?

0	0	0	B-Cuisine
Are	there	any	French
0	0	B-Location	I-Location
restaurants	in	downtown	Toronto

according to their usefulness and select only the best ones for labeling

I want to eat sushi!

I want to eat pizza!

selecting the most useful sentences to label

3

We apply this data selection method to the problem of slot filling and prove that the model's performance can be considerably better with training samples chosen in an intelligent way

Sentence embeddings and sentence similarity

- Use a recently developed technique, sent2vec, that produces continuous vector representations of sentences
- **Define the similarity between two sentences** *X* and *Y* as: $sim(x, y) = exp(-\beta ||e(x) - e(y)||_2)$
- where e(x) is the embedding of the sentence X and β is the inverse of the average distance between all pairs of embeddings
- Hypothesis : closeness in the embedding space is in line with the human perception of sentence similarity

What was the movie that featured Over the Rainbow?

Find me the movie with the song Over the Rainbow
What movie was the song Somewhere Out There featured in ?

 We experiment with 3 different publicly available datasets, each containing few thousands of sentences

MIT Restaurant Dataset

t MIT Movie Dataset ATIS Dataset

Using some selection criteria, we select only a few dozen sentences, we reveal their labels and use them to train our model. This simulates the behavior of a system that needs to be trained for a newly available domain and we refer to it as the LOW-DATA regime.

• What movie features the song Hakuna Matata?

Performance metric: F1 score on a separate test set

Data selection methods

Use a well-chosen submodular function to evaluate the usefulness of each subset of sentences X

A function $F : 2^V \to \mathbb{R}$ is called submodular if the value of an element diminishes as the context in which it is considered grows. Formally, F is submodular if $F(s|Y) \leq F(s|X)$ for every $X \subseteq Y$ and every $s \in V \setminus Y$.

 $- p_{\Theta}(\hat{y}_{w_i}|x))$

Baselines

- Random Data Selection
- Classic Active Learning
- Randomized Active Learning

Uncertainty of the model for a sentence X of k words

Coverage Score

$$C(X) = \sum_{x \in X} \sum_{y \in V} sim(x, y)$$
 $C(s|X) = \sum_{y \in V} sim(s, y)$

inear-Penalty Marginal Gain
$$D(s|X) = \sum_{y \in V} sim(s, y) - \alpha \sum_{x \in X} sim(s, x)$$

Ratio-Penalty Marginal Gain

$$F(s|X) = rac{\sum_{y \in V} sim(s, y)}{1 + \sum_{x \in X} sim(s, x)}$$

Top 3 Ratio-Penalty Sentences (MIT Restaurant Dataset)

- I need to find somewhere to eat something close by, I'm really hungry. Can you see if there's any buffet style restaurants within 5 miles of my location?
- Find zenna noodle bar restaurant with kids friendly amenity around this place
- Where is the nearest 5 star restaurant that serves Italian food?

Results

For more information, see: M. Dimovski et al., Submodularity-Inspired Data Selection for Goal-Oriented Chatbot Training Based on Sentence Embeddings, IJCAI 2018