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Abstract
Spoken language understanding (SLU) systems,
such as goal-oriented chatbots or personal assis-
tants, rely on an initial natural language under-
standing (NLU) module to determine the intent and
to extract the relevant information from the user
queries they take as input. SLU systems usually
help users to solve problems in relatively narrow
domains and require a large amount of in-domain
training data. This leads to significant data avail-
ability issues that inhibit the development of suc-
cessful systems. To alleviate this problem, we pro-
pose a technique of data selection in the low-data
regime that enables us to train with fewer labeled
sentences, thus smaller labelling costs.
We propose a submodularity-inspired data rank-
ing function, the ratio-penalty marginal gain, for
selecting data points to label based only on the
information extracted from the textual embedding
space. We show that the distances in the embedding
space are a viable source of information that can be
used for data selection. Our method outperforms
two known active learning techniques and enables
cost-efficient training of the NLU unit. Moreover,
our proposed selection technique does not need
the model to be retrained in between the selection
steps, making it time efficient as well.

1 Introduction
In their most useful form, goal-oriented dialogue systems
need to understand the user’s need in great detail. A typ-
ical way of structuring this understanding is the separation
of intents and slots that can be seen as parameters of the in-
tents. Slot filling, also known as entity extraction, is find-
ing the relevant information in a user query that is needed
for its further processing by the SLU system. For exam-
ple, in a restaurant reservation scenario, given the sentence
Are there any French restaurants in downtown Toronto? as
an input, the task is to correctly output, or fill, the following
slots: {cuisine: French} and {location: downtown Toronto}.

The slot filling task is usually seen as a sequence tagging
problem where the goal is to tag each relevant word token
with the corresponding slot name using the B–I–O (Begin,
Inside, Outside) convention. The table below shows how we
would correctly tag the previous example sentence.

Are there any French
O O O B-Cuisine
restaurants in downtown Toronto
O O B-Location I-Location

Most methods created for slot filling are supervised and
require large amounts of labeled in-domain sentences in order
to perform well. However, it is usually the case that only
very little or no training data is available. Annotating new
sentences is an expensive process that requires considerable
human effort and, as a result, achieving good performance
with as little data as possible becomes an important concern.

Our solution to the data availability problem relies on a
better way of selecting the training samples to be labeled. If
a limited amount of resources are available, we want to en-
able the user to spend them in the most efficient way. More
precisely, we propose a method for ranking the unlabeled sen-
tences according to their utility. We measure the latter with
the help of a ranking function that satisfies the principles
of submodularity, a concept known to capture the intuition
present in data selection. We run experiments on three differ-
ent publicly available slot filling datasets: the MIT Restau-
rant, the MIT Movie and the ATIS datasets [Liu et al., 2013a;
2013b]. We are interested in measuring the model’s perfor-
mance when it is trained with only a few dozen labeled sen-
tences, a situation we refer to as low-data regime. We com-
pare our proposed selection method to several standard base-
lines, including two variants of active learning.

We identify our three main contributions:

• We show that the space of raw, unlabeled sentences con-
tains information that we can use to choose the sentences
to label.

• We create a sumbodularity-inspired ranking function for
selecting the potentially most useful sentences to label.
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• We apply this data selection method to the problem of
slot filling and prove that the model’s performance can
be considerably better when the training samples are
chosen in an intelligent way.

In Section 3, we provide some background and details
about the novel data selection technique. In Section 4, we
describe the datasets used in our experiments and the base-
lines that we use as a comparison reference point. Finally, in
Section 5, we present and discuss the obtained results.

2 Related Work
2.1 Slot Filling
Numerous models have been proposed to tackle the slot fill-
ing task, of which a comprehensive review was written by
[Mesnil et al., 2015]. However, the most successful methods
that have emerged are neural network architectures and, in
particular, recurrent neural network schemes based on word
embeddings [Kurata et al., 2016; Ma and Hovy, 2016; Liu
and Lane, 2016; Zhang and Wang, 2016; Zhu and Yu, 2017;
Zhai et al., 2017]. The number of proposed model variants
in the recent literature is abundant, with architectures ranging
from encoder-decoder models [Kurata et al., 2016], models
tying the slot filling problem with the closely related intent
detection task [Zhang and Wang, 2016] and even models that
use the attention mechanism [Liu and Lane, 2016], originally
introduced in [Bahdanau et al., 2014]. The final model that
we adopted in our study is a bi-directional LSTM network
that uses character-sensitive word embeddings, together with
a fully-connected dense and linear CRF layer on top [Huang
et al., 2015; Lample et al., 2016]. We provide the model’s
specifications and more details in the appendix.

2.2 Low-Data Regime Challenges
Typically, machine learning models work reasonably well
when trained with a sufficient amount of data: for example,
reported results for the popular ATIS domain benchmark go
beyond 95% F1 score [Liu and Lane, 2016; Zhang and Wang,
2016]. However, performance significantly degrades when
little amount of training data is available, which is a common
scenario when a new domain of user queries is introduced.
There are two major approaches used to handle the challenges
presented by the scarcity of training data:
• The first strategy is to train a multi-task model whose

purpose is to deliver better performance on the new do-
main by using patterns learned from other closely related
domains for which sufficient training data exists [Jaech
et al., 2016; Hakkani-Tür et al., 2016]
• The second strategy is to select the few training instances

that we can afford to label. One well known approach
are the active learning strategies [Fu et al., 2013; Angeli
et al., 2014] that identify data points that are close to the
separation manifold of an imperfectly trained model.

In our work, we focus on the latter scenario, as experience
has shown that high-quality in-domain data is difficult to re-
place by using other techniques. Therefore, we assume that
we can choose the sentences we want to label and the main
question is how to make this choice in a way that would yield
the model’s best performance.

3 Data Selection
3.1 Submodularity and Rankings
Let V be a ground set of elements and F : 2V → R a func-
tion that assigns a real value to each subset of V . F is
called submodular if the incremental benefit of adding an el-
ement to a set diminishes as the context in which it is con-
sidered grows. Formally, let X and Y be subsets of V , with
X ⊆ Y ⊆ V . Then, F is submodular if for every e ∈ V \ Y ,
F (e|Y ) ≤ F (e|X) where F (e|A) = F ({e} ∪A)− F (A) is
the benefit, or the marginal gain of adding the element e to
the set A. The concept of submodularity captures the idea of
diminishing returns that is inherently present in data selection
for training machine learning models. In the case of the slot
filling problem, the ground set V is the set of all available
unlabeled sentences in a dataset and the value F (X) for a
set X ⊆ V is a score measuring the utility of the sentences
in X . Submodular functions have already been successfully
used in document summarization [Lin and Bilmes, 2011;
2012], and in various tasks of data subset selection [Kirch-
hoff and Bilmes, 2014; Wei et al., 2014; 2015]. However, to
the best of our knowledge, they have not yet been studied in
the slot filling context.

An important hypothesis that is made when submodular
functions are used for data selection is that if X and Y are
two sets of data points for which F (X) ≤ F (Y ), then us-
ing Y for training would give an overall better performance
than using X . If we have a predefined size for our training
set, i.e., a maximum number of samples that we can afford to
label, then we would need to find the set X that maximizes
F (X) with a constraint on |X|. Cardinality-constrained sub-
modular function maximization is an NP-hard problem and
we usually have to resort to greedy maximization techniques
(see [Krause and Golovin, 2014]). If the function is mono-
tone, then the greedy solution, in which we iteratively add
the element with the largest marginal gain with respect to the
already chosen ones, gives a (1 − 1/e)-approximation guar-
antee [Nemhauser et al., 1978]. As a byproduct, this greedy
procedure also produces a ranking of the n = |V | sentences,
i.e., outputs a ranking permutation π : [n] → [n] that poten-
tially orders them according to their usefulness. Therefore, a
monotone submodular function F naturally defines a selec-
tion criteria πF that is the order in which the elements are
chosen with the greedy optimization procedure. In our work,
we explore different data selection criteria, without limiting
ourselves to properly defined submodular functions.

3.2 Sentence Similarity
Unless we perform the selection of the sentences to label
based on some intrinsic attributes such as their length, an im-
portant metric we need to define is the similarity between
a pair of sentences. The need to introduce such a mea-
sure of similarity appeared simultaneously with the devel-
opment of active learning techniques for text classification.
For example, in [McCallum et al., 1998], the similarity be-
tween two documents x and y, their analogue to our sen-
tences, is measured by an exponentiated Kullback-Leibler
divergence between the word occurrence empirical mea-
sures P̂(W = w|x) and λP̂(W = w|y) + (1− λ)P̂(W = w)
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where λ is a smoothing parameter. In the recent literature,
however, the focus has shifted to using word or sentence em-
beddings as a basis for almost all tasks involving text pro-
cessing. The continuous (Euclidean) space embeddings have
become fundamental building blocks for almost all state-of-
the-art NLP applications.

In our study, we use a recently developed technique of
producing sentence embeddings, sent2vec [Pagliardini
et al., 2017]. The sent2vec method produces continu-
ous sentence representations that we use to define the sim-
ilarity. More precisely, for every sentence s ∈ V , the
sent2vec algorithm outputs a 700-dimensional vector em-
bedding e(s) ∈ R700 that we in turn use to define the similar-
ity between a pair of sentences x and y as follows:

sim(x, y) = exp
(
− β‖e(x)− e(y)‖2

)
(1)

where

β =

(
1

|V |(|V | − 1)

∑
u∈V,w∈V

‖e(u)− e(w)‖2
)−1

(2)

is a scaling constant, measuring the concentration of the cloud
of points in the space. It is the inverse of the average distance
between all pairs of embeddings. Note that β will in gen-
eral depend on the dataset, but it is not a hyper-parameter
that needs to be tuned. Finally, the exponential function con-
denses the similarity to be in the interval [0, 1] as β > 0.

For a fixed sentence s, the most similar candidates are
those whose embedding vectors are the closest to e(s) in the
embedding space. Tables 1 and 2 present two example sen-
tences (shown in bold), one from the MIT Restaurant and an-
other from the MIT Movie dataset, together with their closest
neighbors. Based on the numerous examples that we ana-
lyzed, it appears that the closeness in the embedding space
is in line with the human perception of sentence similarity.
Therefore, selecting a particular sentence for training should
largely diminish the usefulness of its closest neighbors.

A 2-dimensional t-SNE projection of the cloud of points
of the MIT Movie domain, together with an isolated example
cluster, is shown on Figure 1. The large black triangle in the
cluster is an example sentence and the darker dots are its clos-
est neighbors. Closeness is measured in a 700-dimensional
space and distances are not exactly preserved under the 2-
dimensional t-SNE projection portrayed here. The cluster
shown on Figure 1 corresponds to the sentences in Table 2.

3.3 Coverage Score
Once we have defined a similarity metric between sentences,
it can be used in the definition of various submodular func-
tions. An important example is the coverage score function

whats a cheap mexican restaurant here
we are looking for a cheap mexican restaurant
i am looking for a cheap mexican restaurant
is ixtapa mexican restaurant considered cheap

Table 1: An example sentence s from the MIT Restaurant domain
and the sentences corresponding to the three closest points to e(s)

Figure 1: A 2-dimensional t-SNE projection of the cloud of points
representing the embeddings of the sentences of the MIT Movie do-
main. The overlapping plot gives a closer view of the small cluster
at the bottom left; the corresponding sentences are shown in Table 2

that evaluates every subset of sentences X in the following
way [Lin and Bilmes, 2011]:

C(X) =
∑
x∈X

∑
y∈V

sim(x, y). (3)

Intuitively, the inner sum measures the total similarity of
the sentence x to the whole dataset; it is a score of how well
x covers V . The marginal gain of a sentence s is given by

C(s|X) = C({s} ∪X)− C(X) =
∑
y∈V

sim(s, y). (4)

It can be easily seen that the marginal gain C(s|X) does
not depend onX , but only on s itself. This makes the function
C, strictly speaking, modular. The cardinality-constrained
greedy optimization procedure for C would, in this case, out-
put the optimal solution. Table 3 presents the top three cov-
erage score sentences from the MIT Restaurant dataset, and
Figure 2 shows that these points tend to be centrally posi-
tioned in the cloud.

The coverage score function suffers from that it only con-
siders how much a sentence is useful in general, and not in
the context of the other sentences in the set. Hence, it might

what was the movie that featured over the rainbow
find me the movie with the song over the rainbow
what movie was the song somewhere out there featured in
what movie features the song hakuna matata

Table 2: An example sentence s from the MIT Movie domain and
the sentences corresponding to the three closest points to e(s)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4021



The top three sentences with highest coverage score
1. i need to find somewhere to eat something close by
im really hungry can you see if theres any buffet style
restaurants within five miles of my location
2. i am trying to find a restaurant nearby that is casual
and you can sit outside to eat somewhere that has good
appetizers and food that is a light lunch
3. i need to find a restaurant that serves sushi near 5 th
street one that doesnt have a dress code

Table 3: The top three coverage score sentences from the MIT
Restaurant domain

Figure 2: The position of the top forty points in the 2-dimensional
t-SNE projection of the cloud corresponding to the MIT Restaurant
dataset according to two different rankings

pick candidates that cover much of the space, but could be
very similar to each other. In order to deal with this prob-
lem, an additional penalty or diversity reward term is usually
introduced and the marginal gain takes the form of

D(s|X) =
∑
y∈V

sim(s, y)− α
∑
x∈X

sim(s, x) (5)

where α is a parameter that measures the trade-off between
the coverage of s and its similarity to the set of already chosen
sentences X . The additional term makes the function D sub-
modular as D(s|X) is decreasing in X . However, D features
an additional parameter that needs to be tuned and moreover,
experiments with both C and D (see Figure 6 in the results
section) yielded mediocre results. In the next section, we in-
troduce our new selection method that features a non-linear
penalization and does not have any additional parameters.

3.4 Ratio-Penalty Marginal Gain
We propose a direct definition of a marginal gain of an ele-
ment with respect to a set. This is an alternative to providing
a submodular function for which we derive the marginal gain
expression and then use it to find the maximizing set of a
given size. We then use this marginal gain to rank and select
the sentences that are likely the most valuable for labeling.
We call it the ratio-penalty marginal gain and define it as:

F (s|X) =

∑
y∈V sim(s, y)

1 +
∑
x∈X sim(s, x)

. (6)

We cannot uniquely define a submodular function that gen-
erates the ratio-penalty marginal gain. To see this, notice

Domain #train #test #slots F1 score
MIT Restaurant 7661 1522 17 80.11
MIT Movie 9776 2444 25 87.86
ATIS 4978 893 127 95.51

Table 4: The three domains and their basic information (number
of training samples, number of samples in the test set and number
of different slots). The MIT Restaurant and MIT Movie datasets
contain user queries about restaurant and movie information. The
Airline Travel Information Services (ATIS) dataset mainly contains
questions about flight booking and transport information

that, for example, F (a|∅) + F (b|{a}) 6= F (b|∅) + F (a|{b}),
which already makes the definition of F ({a, b}) ambiguous.
Nevertheless, the above expression (6) satisfies the submodu-
larity condition by being decreasing in X .

The ratio-penalty marginal gain is again a trade-off be-
tween the coverage score of a sentence and its similarity
to those already chosen. An important change is that the
penalty is introduced by division, instead of by subtraction
as in D(s|X) from the previous section. To gain more intu-
ition, notice that, as the logarithm function is increasing, the
induced ranking πF is the same as the ranking πF̃ produced
by F̃ (s|X), where we define F̃ (s|X) = logF (s|X), i.e.,

F̃ (s|X) = log
∑
y∈V

sim(s, y)− log

(
1 +

∑
x∈X

sim(s, x)

)
.

(7)
In summary, we start with the Euclidean distance between

the embeddings of the sentences, we re-scale it by dividing
it by the average distance 1/β and squash it exponentially.
This defines our similarity metric. Then, we do an aggregate
computation in this new space by summing the similarities,
and we revert to the original scale by taking the logarithm.

4 Experiments

4.1 Datasets and Method

We experiment with three different publicly available datasets
whose details are shown in Table 4. Each one contains few
thousand training samples, out of which we select, follow-
ing some selection criteria π, only a few dozen. More pre-
cisely, we are interested in the model’s performance when it
is trained only with k = 10, 20, 30, ..., 100 labeled sentences.
This selection simulates the behaviour of a system that needs
to be trained for a newly available domain. We measure the
performance by the best achieved F1 score during training on
a separate test set that we have for each domain. The final col-
umn of Table 4 shows the performance of our adopted model
trained on the full datasets. These are the best results that
we can hope to achieve when training with a proper subset
of training samples. We will denote by Tn = {x1, x2, ..., xn}
the full training set of a particular domain, assuming that each
xi is a (sentence, tags) pair. The training set comprising the
subset of k training samples that we select using the ranking
π will be denoted by T πk = {xπ(1), xπ(2), ..., xπ(k)}.
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4.2 Baselines
To the best of our knowledge, data selection techniques have
not yet been applied to the slot filling problem. As a result,
there is no direct benchmark to which we can compare our
method. Instead, we use three baselines that were used in
similar situations: random data selection, classic active learn-
ing and an adaptation of a state-of-the-art selection method –
randomized active learning [Angeli et al., 2014].

Random Selection of Data
To select k sentences out of the total n, we uniformly pick
a random permutation σ ∈ Sn and take as our training set
T σk = {xσ(1), xσ(2), ..., xσ(k)}. Although random data se-
lection occasionally picks irrelevant sentences, it guarantees
diversity, thus leading to a reasonable performance. We show
that some complex methods either fail to outperform the ran-
dom baseline or they improve upon it only by a small margin.

Classic Active Learning Framework
For our second baseline, we choose the standard active learn-
ing selection procedure. We iteratively train the model and
select new data based on the model’s uncertainty about new
unlabeled points. To calculate the uncertainty for a sen-
tence x = (w1, w2, ..., wk) containing k word tokens, we
adapt the least confidence (LC) measure [Fu et al., 2013;
Culotta and McCallum, 2005]. We define the uncertainty of
a trained model Θ for the sample x as the average least con-
fidence uncertainty across the labels

u(x) =
1

k

k∑
i=1

(1− pΘ(ŷwi |x)) (8)

where ŷw is the most likely tag for the word w predicted by
Θ and pΘ(ŷw|x) is its softmax-normalized score output by
the dense layer of the model network.

We proceed by selecting batches of ten sentences, thus per-
forming a mini-batch adaptive active learning [Wei et al.,
2015] as follows. The first ten sentences T10 used for the
initial training of the model Θ are picked randomly. Then, at
each iteration k ∈ [20, 30, 40, ..., 100], we pick a new batch of
ten sentencesN for which Θ is the most uncertain and retrain
the model with the augmented training set Tk = Tk−10 ∪N .

Randomized Active Learning
In the text processing scenario, the classic active learning al-
gorithm has the drawback of choosing sentences that are not
good representatives of the whole dataset. The model is often
the least certain about samples that lie in sparsely populated
regions and this blindness to the input space density often
leads to a poor performance. To address this problem, data
is usually selected by a weighted combination of the uncer-
tainty about a sample and its correlation to the other samples
[Fu et al., 2013; Culotta and McCallum, 2005]. However,
this approach requires finding a good correlation metric and
also tuning a trade-off parameter of confidence versus rep-
resentativeness. The latter is not applicable in our scenario
because we would need to access a potential validation set,
which deviates from our selection principle of labeling the

Figure 3: Comparison between the ratio-penalty and the three base-
line selection methods for the MIT Restaurant dataset

Figure 4: Comparison between the ratio-penalty and the three base-
line selection methods for the MIT Movie dataset

least data possible. Instead, we adapt a well-performing tech-
nique proposed by [Angeli et al., 2014] in which samples are
selected randomly proportionally to the model’s uncertainty.
More precisely, a sample sentence x is selected with proba-
bility u(x)/

∑
y∈V u(y). Although uncertainty will again be

the highest for the poor samples, as their number is small,
they will contain only a tiny percent of the total uncertainty
mass across the whole dataset. Consequently, they will have
very little chance of being selected.

5 Results
Figures 3, 4 and 5 show the resulting curves of the three
baselines and the ratio-penalty selection (RPS) for the MIT
Restaurant, the MIT Movie and the ATIS dataset, respec-
tively. The x-axis shows the number of samples used for
training and the y-axis shows the best F1 score obtained dur-
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Figure 5: Comparison between the ratio-penalty and the three base-
line selection methods for the ATIS dataset

ing training on a separate test set. As the three baselines rely
on random sampling, we repeat the procedure five times and
plot the mean together with a 90% confidence interval. As ex-
pected, the classic active learning (ALC) algorithm performs
poorly because it tends to choose uninformative samples at
the boundary of the cloud. The randomized active learning
(ALR) gives a much better score, but surprisingly, it remains
comparable to the random data selection strategy. Finally, the
ratio-penalty selection (RPS) yields the best results, outper-
forming the baselines by a significant margin across all three
domains. For example, in the MIT Restaurant domain, the
average gap between RPS and the best performing baseline,
ALR, is around 6 points in F1 score. The best result is ob-
tained for k = 10 samples, where we observe approximately
55% relative improvement of RPS over ALR. Both in the MIT
Restaurant and MIT Movie domains, RPS needs, on average,
20 labeled sentences less to match the performance of ALR.

Figure 6 presents the resulting curves of different selection
strategies for the MIT Restaurant dataset. The results were
similar for the remaining two domains. The linear penalty se-
lection, introduced in Section 3.3 and shown only for the best
parameter α, yields results that are better than the random
choice and, in some regions, comparable to RPS. However,
the disadvantage of this method is the requirement to tune an
additional hyper-parameter that differs from one domain to
another. We also present the performance when we train the
model with the top k longest sentences (Length Score). It is
fairly well in the very low data regimes, but it soon starts to
degrade, becoming worse than all the other methods.

6 Conclusion
In this paper, we have explored the utility of existing data se-
lection approaches in the scenario of slot filling. We have in-
troduced a novel submodularity-inspired selection technique,
showing that a good choice of selection criteria can have a
strong influence on the model’s performance in the low-data
regime. Moreover, we have shown that it is not necessary

Figure 6: Comparison of various selection techniques applied on the
MIT Restaurant dataset

to limit this search to properly defined submodular functions.
As they are efficiently optimized in practice by using the de-
rived maximal gain, defining only the latter is sufficient to
produce the rankings of the sentences. In addition, we have
also defined a similarity metric between pairs of sentences
using their continuous vector representations produced by a
recent novel technique, sent2vec. Finally, we have shown
that the space of raw samples already contains much infor-
mation that can be exploited. This information is potentially
more useful than the output space information used in the ac-
tive learning paradigm.
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A Adopted Model Specifications
Our adopted model uses pre-trained GloVe embeddings on
both word (dw = 300) and character level (dc = 50). The
final word representation is a concatenation of its GloVe em-
bedding and its character representation obtained by a sep-
arate mini-BiLSTM network. The hidden layer sizes of the
main and the character BiLSTM are hw = 200 and hc = 100,
respectively. Both the word and the character embeddings are
fine-tuned during the training phase. Gradients are clipped
to a maximum norm of 5 and the learning rate of the Adam
optimizer, which starts at 0.005, is geometrically decayed at
every epoch by a factor of 0.95, until it reaches the minimum
set value of 0.001. Mini-batch size is equal to 20.
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