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Abstract

Goal-Oriented (GO) Dialogue Systems, colloquially known as goal oriented chat-
bots, help users achieve a predefined goal (e.g. book a movie ticket) within a closed
domain. A first step is to understand the user’s goal by using natural language
understanding techniques. Once the goal is known, the bot must manage a dialogue
to achieve that goal, which is conducted with respect to a learnt policy. The success
of the dialogue system depends on the quality of the policy, which is in turn reliant
on the availability of high-quality training data for the policy learning method, for
instance Deep Reinforcement Learning.

Due to the domain specificity, the amount of available data is typically too low
to allow the training of good dialogue policies. In this master thesis we introduce
a transfer learning method to mitigate the effects of the low in-domain data
availability. Our transfer learning based approach improves the bot’s success rate
by 20% in relative terms for distant domains and we more than double it for close
domains, compared to the model without transfer learning. Moreover, the transfer
learning chatbots learn the policy up to 5 to 10 times faster. Finally, as the transfer
learning approach is complementary to additional processing such as warm-starting,
we show that their joint application gives the best outcomes.
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1§ Introduction

Today, we live in the era of Artificial Intelligence (AI), which is penetrating in
every aspect of our life. Part of this Al ecosystem are the spoken and text-based
Dialogue Systems, which usage is constantly growing. These systems are quite
popular because they have a potential to convey a conversation, just like a real
human, acting in a truly intelligent manner.

To increase the hype, the Loebner prize [Epstein, 1992] is a competition for text-
based Dialogue Systems inspired by the Turing’s imitation game. The aim is to
stimulate and motivate the creation of truly intelligent conversational machines. De-
spite this, the competition has not had a winner in all previous editions. According
to [Kurzweil, 2010] it is only a matter of time when that will happen.

Moreover, with the increasing pervasiveness of smart phones and ubiquitous com-
puter systems, the Dialogue Systems are getting even more attractive. Consequently,
they started being used in a plethora of different applications, ranging from trivial
chit-chatting to personal assistants. An example of such systems are the popular
Apple’s Siri, Google Now and Cortana from Microsoft [Strayer et al., 2017]. There-
fore, it is of paramount importance to continue the development of these systems
and push the boundaries even further.

The text-based Dialogue Systems colloquially known as Chatbots, are divided in
two groups, depending on the nature of the conversation. In fact, there are: i)
open-domain and i) closed-domain Chatbots.

In the open-domain setting the conversation can go in any direction, which means
the users can have an open conversation with the Chatbot about everything, usually
in the format of chit-chatting, without any or minimal functionality. For instance,
[Serban et al., 2016 used the Movie-DiC [Banchs, 2012] corpus of movie dialogues



Chapter 1. Introduction

to build a general-purpose Chatbot. Because of the general-coverage nature, the
open-domain Chatbots require huge amount of annotated data, thus making it
almost impossible to create one.

On the other hand, the closed-domain Dialogue Systems are more practical and
easier to implement, because they focus only on few aspects and are designed to help
users to achieve predetermined goals in a predefined domains. For example, it could
be a travel planning task [Peng et al., 2017] or restaurant table booking dialogue
system [Wen et al., 2016b|, to help users book a flight or table in restaurant, in
the most convenient way, i.e. by conversation. For this reason they are called
Goal-Oriented (GO) Chatbots and can be grouped together in larger systems such
as Amazon Alexa! to give an impression of a general coverage. Each individual
component (which in Amazon Alexa can be viewed as skills of the overarching
generalist bot) is closed-domain in nature.

1.1 Contributions and Thesis Outline

This thesis focuses only on a subset of the Goal-Oriented Chatbots, modeled as Par-
tially Observable Markov Decision Processes (POMDP) [Young et al., 2013], where
the rich set of Reinforcement Learning (RL) algorithms [Sutton and Barto, 1998|
can be used to train them, for instance the Deep Q-Nets (DQN) [Mnih et al., 2015].
The lack of in-domain dialogue data is a key problem for training high quality
RL-based Goal-Oriented Chatbots. We need in-domain labeled dialogues for two
reasons: i) to warm-start the Chatbot, which is a standard widely used technique
and i7) to train the chatbot by simulating a considerable number of different
conversations.

In this thesis we argue that the domain similarity can be leveraged in a clever
way to build efficient GO Chatbots with less data, using the so-called Transfer
Learning technique. We use the similarity between a source and a target domain,
as many domains, such as restaurant and movie booking, share to a large extent
some common information. For example, in the restaurant booking scenario, the
user might ask the question “Which restaurant I can book a table for 3 people for
tomorrow?”, while in the movie booking domain the question could be “Which
theater I can book 3 tickets for tomorrow?”. In both domains, the user includes
information for number of people and time. We believe this information need not
be learnt twice and that a transfer is possible.

Thttps://developer.amazon.com /alexa
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1.1. Contributions and Thesis Outline

We successfully combine Transfer Learning and RL-based Goal-Oriented Chatbots
and to the best of our knowledge we are the first ones doing that. As a result of the
research over the course of this thesis, we published a paper [Ilievski et al., 2018],
which is submitted for a review at the 27th International Joint Conference on
Artificial Intelligence (IJCAI). The contributions of this thesis are following:

e Training GO Chatbots with less data: In data constrained environments,
models trained with Transfer Learning achieve better training and testing
performances than ones trained independently.

e Better GO Chatbot performance: Using Transfer Learning has a significant
positive effect on performance even when all the data from the target domain
is available.

e Intuitions on further improvements: We show the gains obtained with Trans-
fer Learning are complementary to the ones due to warm-starting and the
two can be successfully combined.

e New published datasets: We publish new datasets for training Goal-Oriented
Dialogue Systems, for restaurant booking and tourist info domains?. They are
derived from the third Dialogue State Tracking Challenge [Henderson et al., 2013].

After the Related Work Chapter (Chapter 2), we first make a general overview of
the Dialogue Systems in Chapter 3. Then, in Chapter 4, we describe the model of
the RL-based GO Chatbots, which performance relies on a robust dialogue state
tracking and an efficient learnt policy, as described in Chapter 5. We conduct our
experiments and show the results in Chapter 6. Finally in Chapter 7 we conclude
our work and present the possible future work.

2The datasets will be published in the camera-ready version
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4 Related Work

2.1 Goal-Oriented (GO) Dialogue Systems

The Goal-Oriented (GO) Dialogue Systems have been under development in the past
two decades, starting from the basic, handcrafted Dialogue Systems. For instance,
[Larsson and Traum, 2000] introduced a framework for dialogue management de-
velopment, based on hand-crafted rules. In the same direction, [Zue et al., 2000]
built a weather information, hand-crafted Goal-Oriented Chatbot. The recent
efforts to build such systems are generally divided in three lines of research.

2.1.1 Fully-Supervised Models

The first way is to treat them in an end-to-end, fully supervised sequence-to-
sequence manner [Sutskever et al., 2014]. Thus, we can use the power of the
deep neural networks based on the encoder-decoder principle to infer the latent
representation of the dialogue state. However, it is worth noting that these models
require considerable amount of data.

The authors in [Vinyals and Le, 2015 used standard Recurrent Neural Networks
(RNNs) and trained a Goal-Oriented Chatbot in a straightforward sequence-to
sequence fashion. They benchmarked their findings in I'T helpdesk troubleshooting
domain, where costumers face computer related issues, and a specialist help them
by conversing and walking through a solution. Due to the incapability of the
recurrent nets to compress very long dependencies, this chatbot is not having a
strong reasoning power.

To overcome the RNN memory limitations, in their work [Bordes and Weston, 2016|
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used LSTM cells in combination with explicit memory, known as Memory Networks
[Sukhbaatar et al., 2015], to build a Goal-Oriented Chatbot, using the bAbI' tasks
for restaurant reservation. The chatbot demonstrated better reasoning power, thus
remembering and updating the past user preferences. For this reason, this work
represents a testbed for testing the shortcomings and strengths of fully-supervised
end-to-end Goal-Oriented Dialogue Systems.

2.1.2 Reinforcement Learning-based Models

Another branch of research had emerged, focusing on the Deep Reinforcement
Learning because the fully-supervised approach is data-intensive. These models
have a quite complex structure, since they include many submodules, such as
Natural Language Understanding (NLU) [Hakkani-Tiir et al., 2016] and Natural
Language Generation (NLG) [Wen et al., 2015] units, as well as a Dialogue State
Tracker (DST).

Aligned in this direction, [Cuayahuitl, 2017] created a simple Dialogue System for a
restaurant reservation domain. The system’s actions solely depend on the RL-based
agent, by performing action selection directly from raw text of the last user and
system responses instead of manual feature engineering. Therefore, this system
does not include any language understanding and state tracking units, which in
turn is quite constraining. Another simple Question-Answering Chatbot (Q&A bot)
is presented in [Dhingra et al., 2016]. It is an end-to-end Reinforcement Learning
Chatbot, which helps users search Knowledge Bases (KBs) for movies, without
composing complicated queries.

As an extension of all the previous work, |Li et al., 2017] went one step further
and built a comprehensive Movie Booking Chatbot. It includes a User Simulator
[Li et al., 2016], which simulates the user in the training process, Natural Language
Understanding (NLU) and Natural Language Generation (NLG) units, as well as
a basic Dialogue State Tracker and a Policy Learning module. It is trained in an
end-to-end fashion, by leveraging the Deep Q-Nets (DQN) [Mnih et al., 2015] for
the policy learning.

Thttps:/ /research.fb.com/downloads/babi/
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2.1.3 Hybrid Models

This line of research combines both, the Fully-Supervised and Reinforcement
Learning-based approaches, in order to escape the limitations, characteristic for
both of them.

In their work [Su et al., 2016] described a two-step approach to train a policy
for Goal-Oriented Chatbot. In the first step, the algorithm is trained on a fixed
corpus data in a supervised way. In the second step, the policy is fine-tuned
using RL-based policy gradient [Williams, 1992] technique, in order to explore the
dialogue space more efficiently.

Similarly, [Williams et al., 2017], proposed a solution to train a Goal-Oriented
Dialogue System in two modes: off-line and on-line mode. In the off-line mode,
the system is trained in a fully-supervise manner, combining an LSTM network
with hand-crafted templates, to mitigate the data requirements. Afterwards, in the
on-line mode, the system learns autonomously by incorporating RL-based policy
gradient approach.

2.2 Data-Constrained Dialogue Systems

One desired property of the Goal-Oriented Chatbots is the ability to switch to new
domains and at the same time not to lose any knowledge learned from training
on the previous ones. This property is enforced due to the lack of in-domain data
required to train high-quality Goal-Oriented Chatbots.

In this direction, the authors in [Gasi¢ et al., 2015| proposed a Gaussian Process-
based technique to learn generic dialogue polices, which are organized in a class
hierarchy. These policies with a modest amount of data can be furthermore adjusted
according to the use case of the dialogue system.

On the other hand, [Wang et al., 2015] learned domain-independent dialogue poli-
cies, such that they parametrized the ontology of the domains. In this way, they
show that the policy optimized for a restaurant search domain can be successfully
deployed to a lap-top sale domain.

Last but not the least, [Lee, 2017| utilized a continual learning technique, to
smoothly add new knowledge in the neural networks that specialized a dialogue
policy in an end-to-end fully-supervised manner.

V. Ilievski 7
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Nevertheless, none of the previously mentioned papers tackles the problem of
transferring the domain knowledge in case when the dialogue policy is optimized
using a Deep Reinforcement Learning. In this thesis, we propose such method, based
on the standard Transfer Learning technique [Pan and Yang, 2010]. Therefore,
using this method we surpass the limitations to transfer the in-domain knowledge
in Goal-Oriented Dialogue Systems based on Deep Reinforcement Learning.

8 V. llievski



8] Overview of Dialogue Systems

This chapter gives an overview of the Dialogue Systems in general. The research
on the dialogue systems intents to create comprehensive systems that can hold
a real conversation, successfully employing all aspects: reasoning power, giving
well defined and reasonable responses, emotion detection etc. Depending on the
nature of the input and output, there are two types of Dialogue Systems: i) Spoken
Dialogue Systems (SDS) and ii) Text-Based Dialogue Systems colloquially known
as Chatbots. Fundamentally, both types exhibit many similarities, only the pre-
and post-processing techniques differ.

There is no consensus on the architecture of the Dialogue Systems, it is case-
dependent. In general they are always composed of two parts: i) user, whether
real or simulated and ¢i) the internal system. One good reference is given in
[Pieraccini and Huerta, 2005]. In any case, both parts converse in alternating
manner such that a dialogue turn is one cycle of consecutive utterances from the
user and the system.

3.1 Spoken Dialogue Systems

The Spoken Dialogue Systems are specially designed for environments which does
not include user interfaces such as big screens and keyboards, they rather use
microphone and speakers. [Henderson, 2015¢| shows a typical composition of the
Spoken Dialogue Systems as well as the information flow. For this reason, the
input and output is continuous speech signal, which requires special modules and
techniques to handle (see Figure 3.1), which includes:

e The Automatic Speech Recognition (ASR) unit [Zhang et al., 2017] assigns

9
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audio signal

Automatic Speech
Speech' . words Synthesis
Recognition
Spoken Natural
Language dialogue acts Language
Understanding Generation

Disalogue Dialogue
tate
Tracking Management

Figure 3.1 — The architecture of a Spoken Dialogue System from [Henderson, 2015¢|

probabilities to the words in the user utterance.

e The Spoken Language Understanding (SLU) unit [Yao et al., 2014] infers the
semantics of the user input.

e The Speech Synthesis (SS) unit [Zen et al., 2009], will convert the system’s
response into speech.

3.2 Text-Based Dialogue Systems (Chatbots)

Contrary to the Spoken Dialogue Systems, the Text-Based Systems (known as
Chatbots) only focus on the interfaces which include screens and keyboards, meaning
the input and output is text. Consequently, they include appropriate units and
algorithms to handle text. Depending on the nature of the conversation, the
Chatbots are divided in Open-Domain and Closed-Domain Chatbots known as
Goal-Oriented (GO) Chatbots.

In the open-domain setting, the conversation can go in any direction, usually in the
form of chit-chatting, without any purpose. Because of their nature to cover every
possible case, it is almost impossible to create a perfect open-domain Chatbot,
as shown in [Serban et al., 2016]. Thus, most of the chatbot research is on the

10 V. llievski
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closed-domain Chatbots, which is a case in this thesis.

3.3 Goal-Oriented (GO) Chatbots

The Goal-Oriented (GO) Dialogue Systems are more useful and practical and are
easier to implement. This is due to the fact that their domain of expertise is much
narrower, focusing only on few key points of the dialogue. In general there are two
dominant paradigms in GO Dialogue Systems implementations: i) Fully-Supervised
and #7) Reinforcement Learning (RL) based.

3.3.1 Fully-Supervised GO Chatbots

In case of fully supervised implementation, we apply the recurrent neural networks
(RNNs) encoder-decoder principles, mainly applied in the machine translation.
An example of this kind of models is presented in |[Bordes and Weston, 2016,
Wen et al., 2016b]. These models are trained in a sequence-to-sequence fashion
[Sutskever et al., 2014|, that encode the user request and its context and decode
the bot answer directly.

The fully supervised GO chatbots require a considerable amount of annotated
human-human or human-machine dialogues since the system is trying to mimic
the knowledge of the expert. Moreover, we don’t have a control over the internal
state, which means we can not model the dialogue as we wish.

3.3.2 Reinforcement Learning (RL) based GO Chatbots

On the other hand, we can model the GO Chatbots as a Partially Observable Markov
Decision Process (POMDP)|Young et al., 2013]. The Reinforcement Learning (RL)
[Sutton and Barto, 1998] algorithms are one rich subset of powerful and promising
algorithms that can be applied in this case.

Figure 3.2 shows a typical composition of an RL-based GO Chatbot, as well as
the information flow. Following the pipeline, there are three separate components,
each having a specific role in the process:

1. First of all the Natural Language Understanding unit [Hakkani-Tiir et al., 2016]
will infer the semantics of the user input. This includes understanding the
user intent and the slots (i.e. the relevant information).

V. llievski 11
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User Utterance

User Dialogue Act

Dialogue Manager (DM)

¢ Dialogue State Tracker (DST) '

Natural Language Generator (NLG)
EOS - W Wy Wy

3

System Answer

Figure 3.2 — Text-Based Dialogue System modeled as a Partially Observable
Markov Decision Process. The user utterance is parsed by the NLU unit producing
a dialogue act understandable for the system. In the Dialogue Manager, the state
tracker is estimating the state such that the RL agent could take the ideal action.
This action is further passed to the NLG unit and finally presented to the user in

a human readable form.

2. In the second step, the Dialogue Manager (DM) will take care of the dialogue.
Based on the context, previous user and system actions it will produce the
next system action. Usually it includes two other subcomponents: i) Dialogue
State Tracker (DST) [Henderson, 2015a|, which purpose is to build reliable
state of the dialogue and a Policy Learning module which reads the dialogue
states and takes the next system action.

. Finally, the Natural Language Generation unit [Wen et al., 2015], based on
the DM output, will generate a natural sentence, understandable for the end
user.

RL-based Chatbots require less annotated dialogues than their sequence-to-sequence

counterparts, due to their ability to simulate the conversation, thus exploring the

12
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unknown dialogue space more efficiently. The data requirements are however not
trivial and obtaining the dialogue data is still the biggest obstacle their creators
face. In the following chapters we dive deeper in the RL-based GO Chatbots and
show how this obstacles can be surpassed using Transfer Learning.

V. llievski 13






Model of RL-based GO Chatbots

If we model the GO Dialogue Systems as POMDP and apply the Reinforcement
Learning techniques as in [Zhao and Eskenazi, 2016, Li et al., 2017|, then, several
components are compromising that system as shown in Figure 3.2. It consists of two
independent units: the User Simulator on the left side and the Dialogue Manager
(DM) on the right side. In-between there are the Natural Language Understanding
(NLU) and Natural Language Generator (NLG) units. Our work is based on the
model from |[Li et al., 2017], who proposed an end-to-end reinforcement learning
approach to build a Goal-Oriented Chatbot in a movie booking domain.

Goal-Oriented bots contain an initial NLU component, that is tasked with deter-
mining the user’s intent (e.g. book a movie ticket) and its parameters, also known
as slots (e.g. date: today, count: three people, time: 7 pm). The usual practice
in the RL-based Goal-Oriented Chatbots is to define the user-bot interactions as
semantic frames. At some point t in the time, given the user utterance uy, the
system needs to perform an action a;. A bot action is, for instance, to request a
value for an empty slot or to give the final result.

The entire dialogue can be reduced to a set of slot-value pairs, called semantic
frames. Consequently, the conversation can be executed on two distinct levels:
1. Semantic level: the user sends and receives only semantic frames as messages.

2. Natural language level: the user sends and receives natural language sen-
tences, which are reduced to, or derived from a semantic frame by using
Natural Language Understanding (NLU) and Natural Language Generation
(NLG) units respectively [Wen et al., 2015, Hakkani-Tiir et al., 2016].

For instance, in the movie booking domain one semantic frame could be defined as:

15
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{movie_name: “Titanic”, number of people: “2”, theater, intent="request”},

which in natural language could be written as:

“Which theater I can book 2 tickets for the movie Titanic?”

By exchanging this kind of a data structures, the user and the system can convey
the entire conversation until reaching the goal.

4.1 User Simulator

The User Simulator creates a user - bot conversation, given the semantic frames.
Because the model is based on Reinforcement Learning, a dialogue simulation is
necessary to successfully train the model [Li et al., 2016].

From the dataset of available user goals the User Simulator randomly picks one,
which is unknown for the Dialogue Manager. The user goal consists of two different
sets of slots: inform slots and request slots.

e Inform slots are the slots for which the user knows the value, i.e. they represent
the user constraints (e.g. {movie name: “avengers”’, number of people: “3”,
date: “tomorrow”}).

e Request slots are ones for which the user is looking for an answer (e.g. { city,
theater, start_time } ).

Having the user goal as an anchor, the user simulator generates the user utterances
uy. The initial user utterance, similar to the user goal, consists of the initial inform
and request sets of slots. Additionally, it includes a user intent, like open dialogue
or request additional info.

The user utterances generated over the course of the conversation follow an agenda-
based model [Schatzmann and Young, 2009]. According to this model, the user is
having an internal state s,, which consists a goal G and an agenda A. The goal
furthermore is split in user constraints C' and user requests R. In every consecutive
time step t, the user simulator creates the user utterance ug, using its current
state s, and the last system action a;. In the end, using the newly generated user
utterance ug, it updates the internal state s,.

16 V. llievski
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4.2 Natural Language Understanding Unit

The NLU unit is responsible for transforming the user utterance to a predefined se-
mantic frame according to the system’s conventions, i.e. to a format understandable
for the system. This includes a task of slot filling and intent detection.

For example, the intent, could be a greeting, like Hello, Hi, Hey, or it could have
an inform nature, for example I like Indian food, where the user is giving some
additional information. Depending on the interests, the slots could be very diverse,
like the actor name, price, start time, destination city etc. As we can see, the
intents and the slots are defining the closed-domain nature of the Chatbot.

The task of slot filling and intent detection is seen as a sequence tagging problem.
For this reason, the NLU component is usually implemented as an LSTM-based
recurrent neural network with a Conditional Random Field (CRF) layer on top of
it. The model presented in [Hakkani-Tiir et al., 2016], is a sequence-to-sequence
model using bidirectional LSTM net, which fills the slots and predicts the intent in
the same time. On the other hand, the model in [Liu and Lane, 2016] is doing the
same using an attention-based RNN.

To achieve such a task, the dataset labels consist of: concatenated B-I-O (Begin,
Inside, Outside) slot tags, the intent tag and an additional end-of-string (EOS) tag.
As an example, in a restaurant reservation scenario, given the sentence Are there
any French restaurants in Toronto downtown?, the task is to correctly output, or
fill, the following slots: {cuisine: French} and {location: Toronto downtown}. The
table below shows how we would correctly tag the previous example. One very
effective technique to build better NLU units with less data (based on the Active
Learning methodologies) is presented in [Dimovski et al., 2018].

Table 4.1 — An example of tagging a sentence in B-I-O (Begin, Inside, Outside)
format

Are | there | any | French restaurants | in | Toronto downtown?
O O O B-Cuisine | O O | B-Location | I-Location

4.3 Natural Language Generator Unit

The NLG unit, on the other hand is the glue between the system and the user.
Given the system response as a semantic frame, it maps back to a natural language
sentence, understandable for the end user. The NLG component can be rule-based
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or model-based. In some scenarios it can be a hybrid model, i.e. combination of
both.

The rule-based NLG outputs some predefined template sentences for a given
semantic frame, thus they are very limited without any generalization power. For
this reason, they are only used in special occasions.

On the other hand, the model-based NLG units, are having learnable parameters
and are usually trained in a sequence-to-sequence fashion. The models presented in
[Wen et al., 2016a, Wen et al., 2015], use an LSTM-decoder with a given semantic
frame, to generate template-like sentences with slot placeholders. Afterwards, a
beam searched is applied, to replace the placeholders with actual values.

4.4 Dialogue Manager

At the core of the GO Dialogue Systems lies the Dialogue Manager (DM), supported
by the NLU and NLG units. Additionally, the DM could be connected to some
external Knowledge Base (KB) or Data Base (DB), such that it can produce more
meaningful answers.

The Dialogue Manager consists the following two components: the Dialogue State
Tracker (DST) and the Policy Learning which is the RL agent.

The Dialogue State Tracker (DST) is a complex and essential component that
should correctly infer the belief about the state of the dialogue, given all the history
up to that turn. The Policy Learning is responsible for selecting the best action,
i.e. the system response to the user utterance, that should lead the user towards
achieving the goal in a minimal number of dialogue turns.

4.4.1 Dialogue State Tracker

The Dialogue State Tracker (DST) is producing a meaningful state s; of the dialogue
up to time t in the time. The state s; is a data structure, that should depict the
state of the conversation to a level of detail that provides all necessary information
in order an intelligent agent to easily and reliably select the next action.

The tracker, takes all possibly observable input up to time ¢ which includes: all
the user utterances and system actions taken so far, all the results from the NLU
unit. Additionally, it might include all external knowledge provided in a knowledge
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base or a data base. For example in a restaurant search scenario, the state might
indicate the user price range and cuisine preferences, what information they are
seeking, like a telephone number or address.

Therefore, given all of this information, a robust dialogue state tracker outputs a
distribution p (s) over all possible dialogue states. This is due to the fact that the
true state is not fully observable from the raw input. Several factors contribute for
that: ambiguous or not clearly specified user utterances, the noise and the error
from the NLU, changes in user goal etc.

In order to tackle these challenges, in the literature there are three types of
state trackers: rule-based, generative models and discriminative models. Very
recently, the series of the Dialogue State Tracking Challenge (DSTC) have started
[Williams et al., 2016, Henderson, 2015b|, a competition aiming to boost the state
trackers to the next level. Many state-of-the-art dialogue state trackers emerged
from this competitions.

Hand-Crafted DST models

The hand-crafted dialogue state trackers are the most basic ones and they were
used in the early dialogue systems. They infer the state of the dialogue by a
manually designed and tuned parameters, such that the new state s is derived from
the last state s using the last user utterance. An example of such system is the
weather information system developed at MIT, called JUPITER [Zue et al., 2000].
Moreover, in [Larsson and Traum, 2000] a hand-crafted rules are used to build a
complex dialogue management system.

One strong advantage of this kind of state trackers is that they do not require
any training data. However, due to the lack of flexibility and inability to adapt
and generalize over many possible states, a data-driven approach is required and
obvious.

Generative DST models

For this reason, the generative models emerged, modeling the dialogue as a dynamic
Bayesian network considering the state s, and the user action u as an unobservable
random variables. In general, given the input vector x € RY for some N € N, and
the label y, the generative models are trying to estimate the joint distribution of z
and y, i.e. Pr(y,x). Thus, the rest of the probabilities can be derived using the
Bayesian rules. The Bayesian net for inferring the new state s’ is shown in Figure
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4.1. The new state s’, depends on the previous state s, and the current machine
action a’, which on the other side depends on the noisy user action u.

Figure 4.1 — Dynamic Bayesian Net for inferring the state of the dialogue. The
state s’ depends on the previous state s and the system action a’. This leads to
a new user utterance u’ (depending both on the state and system action), which
becomes noisy afterwards.

Discriminative DST models

Finally, the discriminative models for state tracking are the most powerful ones.
They are directly estimating the conditional probability Pr (y|x), where y is the label
and z is the underlying data. One example and very successful discriminative model
is the model described in [Henderson et al., 2014a, Henderson et al., 2014b|. Using
a word-based approach, the authors successfully scaled the model to work on unseen
slots and values. This is done by using the n-gram technique on top of the slot-value
pairs. Moreover, in order to make the system slot invariant, delexicalized features
are used, which means introducing generic symbols. Afterwards, a Recurrent Neural
Network is used to discriminate between the dialogue states.

4.4.2 Policy Learning

The Policy Learning module selects the next system actions to drive the user
towards the goal in the smallest number of steps. It does that by using the
Reinforcement Learning theory.

The theory of Reinforcement Learning is motivated by the neuroscientific perspec-
tives of the animal and human behavior, deeply and well rooted in the nature.
Therefore, by mathematically modeling the nature, we have an intelligent agent
acting in an environment and perceiving a state s. Upon taking an action a, based
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on the policy learned from the past experiences, it is receiving a reward r and it
changes the state of the environment.

Therefore, the role of the dialogue agent is to learn an optimal policy for conducting
efficient and successful dialogue with the user. This is done by following the
reinforcement way of learning, defining final, and immediate reward, such that
the agent should maximize the cumulative future reward. One way to do so, is
by applying on off-policy method, such as Q-learning [Watkins and Dayan, 1992].
The Q-function is the utility of taking an action a, when the agent is perceiving
the state s, by following a policy m = P(a|s). The utility measure is defined as the
problem of maximizing the cumulative future reward that the agent will receive.

The optimal action a, in a given state s, in a given time point ¢, according to the
Q-learning is defined as:

Q" (s,a) = maxE [ry + yrypq + Ve + - [sy = s,a, = a, 7| (4.1)

where 74, 7441, . . . are the rewards at each time step, v € [0, 1] is the discount factor,
i.e. the relevance of the future rewards, and m = P(als) is the agent’s policy. The
optimal action-value (or Q) function obeys an important identity known as the
Bellman equation, which states:

Q" (s,a) =r +ymax Q" (s',d). (4.2)

Obviously, this agent would follow a greedy strategy, and will always exploit the
same set of actions in order to reach the goal. In practice, we want the agent
to generalize well over the state space. For this reason, the agents incorporate
different exploitation-exploration strategies. The most popular and quite effective
one is the € - greedy strategy, for € € [0, 1]. That means with a probability of € the
agent will select a random action, while with a probability of 1 — € it will follow a
greedy approach.

However, by following the Bellman Equation 4.2, the objective function for learning
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the Q-function would be:

target value old value 2
7\

- ~N /_M
Es,a,r,s’ T+ B ch?X Q (3,7 al) - Q (37 a) : (43)

Therefore, in order to find a function approximation of the Q-function, we have to
minimize the equation 4.3.

The recently developed method, by a group of researches at Deep Mind, successfully
applies a deep feed-forward neural network as a function approximator of the Q-
function. Detailed information about the Deep Q-learning (DQN) technique and
how to build more efficient policies using them will be provided in Chapter 5.
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Learning

In Chapter 4, we introduced the Q-learning and the very recent, popular and
effective technique for approximating the Q-function using a deep feed forward
neural network, know as Deep Q-Learning (DQN). In this chapter, we will dive in
depth, explaining the advantages of the DQN, since we use it extensively in our
dialogue systems.

5.1 Deep Q-Learning (DQN)

There are two types of DQN algorithms: i) standard DQN and i) Double DQN
(DDQN) which is an extension and more robust version of the standard DQN
algorithm.

5.1.1 Standard DQN

The agents should be able to generalize well, over a high-dimensional, partially
observable and complex input. Exactly this was the difficulty that most of the
RL algorithms were facing, so their applicability was mainly in domains of fully
observable, finite and low-dimensional states. However, all of this changed af-
ter introducing the Deep Q-Network, by a group of researchers at Deep Mind
[Mnih et al., 2015]. Tt is a standard deep feed-forward neural network, which ap-
proximately calculates @ (s, a| @), where 6 are the parameters, (i.e. weights) of the
Q-Network.

As we already explained, the goal in the reinforcement learning is to minimize the
equation 4.3. However, in the RL community it is widely known that a nonlinear
approximator of the Q-function, such as a neural network, causes instability and
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divergence. This is due to the following two reasons:

1. The correlation between the sequence of observations, i.e. every next state
depends on the previous states and actions, and

2. The targets (labels), depend on the network weights. More precisely, to
calculate the target r + v max, @ (s',a’), used as a correction, we used the
same weights which are changing through the time. This is in total contrast
with the supervised learning, where the targets are fixed before the learning
starts.

The first problem is solved by using a biologically inspired mechanism, called
experience replay, i.e. to learn from experiences from an arbitrary point in the
past. In order to perform such a mechanism, we store the agent’s experiences ¢; =
(St, ar, e, Se41) in a dataset Dy = {ey,--- , e} of tuples. Therefore, at training time,
we randomly sample experiences from the dataset D,, following some probability
distribution, which in the simplest case is a uniform distribution. Using this
technique, we overcome the first problem, but we are still not able to perform
learning in the network, due to the second issue, the targets still depend on the
network weights.

For this reason, we introduce another Q-Network, called target network, with
fixed parameters 6’. As its name suggests, this network is only used to calculate
the targets Q* (s',d’|0), independently from the primary Q-Network. The target
network parameters are only updated with the primary Q-Network parameters
every C' steps and are held fixed between individual updates.

Thus, with the randomly drawn mini-batch of experiences and the target Q-Network
we perform learning using the following loss function:

calc. by target net  calc. by Q-net 2

——
‘C(9> = Es,a,r,s’ T+ sz}x Q (3/7 al|9/) - Q (57 CL|9) (51)

The full algorithm for the Deep Q-Learning with experience reply is described in
more details in Appendix A.1.

To evaluate the performances of the DQN algorithm, the researchers at Deep Mind
took advantage of the Atari 2600 platform, offering 49 challenging games. The
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DQN algorithm outperformed the best existing reinforcement learning methods
on 43 games without incorporating any prior knowledge about the Atari 2600
games. These outstanding results confirmed the superiority of the DQN algorithm
and established it as a state-of-the-art technique in the Reinforcement Learning
community.

5.1.2 Double DQN (DDQN)

The standard DQN algorithm is based on the Bellman equation, thus it includes
maximization step as shown in Equation 5.1. For this reason, it learns unrealistically
high action values, which tends to prefer overestimated to underestimated values.

In their paper [Van Hasselt et al., 2016|, theoretically prove that the overestima-
tions occur non-uniformly and negatively affect the performance of the DQN
algorithm. Therefore, they proposed an extension of the standard DQN algorithm,
called Double DQN (DDQN), in order to overcome these issues.

In the standard DQN algorithm, the decision for the next action is taken according
to the following identity: r + vy max, @ (s',a’). For this reason, the same neural
network is used to evaluate the Q-function and then to select the best action.

In Double DQN, this process is decoupled. One neural network is used to evaluate
the Q-function and a second neural network is used to select the best action. In
mathematical notation, the next action is taken according to the following identity:

r+7Q (s, argmax, Q (s, a')).

5.2 DQN for GO Chatbots

The applications of the DQN algorithm are not only limited to the Atari 2600
games. Very recently the researchers started applying the Deep Q-Learning to
various tasks, including the Goal-Oriented Dialogue Systems.

In the case of Goal-Oriented Chatbots, the agent is getting the new state s; from
the Dialogue State Tracker (DST) and then it takes a new action a¢, based on the
e-greedy policy. It means, with a probability € € [0, 1] it will take a random action,
while with a probability 1 — € it will take the action resulting with a maximal
Q-value. We thus trade between the exploration and exploitation of the dialogue
space. For each slot that might appear in the dialogue, the agent can take two
actions: either to ask the user for a constraining value or to suggest to the user a
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value for that slot. Additionally, there is a fixed size of slot-independent actions,
to open and close the conversation.

The agent receives positive and negative rewards accordingly, in order to force
the agent to successfully conduct the dialogue. It is successful if the number of
totally required dialogue turns to reach the goal is less than a predefined maximal
threshold nmez turns- For every additional dialogue turn, the agent receives a
predefined negative reward 74,40ing. In the end, if the dialogue fails, it will receive
a negative reward rpegqtive €qual to the negative of the predefined maximal allowed
dialogue turns. If the dialogue is successful, it will receive a positive reward 7positives
two times the maximal allowed dialogue turns.

An important addition is the warm-starting technique that fills the experience
replay buffer with experiences coming from a successfully finished dialogues i.e.
with positive experiences. This dramatically boosts the agent’s performances before
the actual training starts, as will be shown in Section 6.2.3. The training process
continues with running a fixed number of independent training epochs n¢pocns. In
cach epoch we simulate a predefined number of dialogues ngigiogues, thus filling
the experience memory buffer. The result consists of mini-batches to train the
underlying Deep Q-Net.

During the training process, when the agent reaches for the first time a success
rate greater or equal to the success rate of a rule-based agent s,uie pasea, we flush
the experience replay buffer, as described in detail in [Li et al., 2017]. We do
this because the DQN-based agent cannot produce valuable experiences in the
beginning, which are all stored in the experience buffer.

5.3 Transfer Learning

The main goal of this work is to study the impact of a widely used technique -
Transfer Learning on goal oriented bots. As the name suggests, transfer learning
transfers knowledge from one neural network to another. The former is known
as the source, while the latter is the target [Pan and Yang, 2010]. The goal of
the transfer is to achieve better performance on the target domain with limited
amount of training data, while benefiting from additional information from the
source domain. In the case of dialogue systems, the input space for both source
and target nets are their respective dialogue spaces.

The training process without transfer learning, shown in Figure 5.1a, processes the
two dialogue domains independently, starting from randomly initialized weights.
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Without Transfer Learning With Transfer Learning

@ Domain 2 Domain 1 Domain 2

Figure 5.1 — Comparison of the Goal-Oriented Dialogue System training process,
without transfer learning (left side) and with transfer learning (right side).

The results are dialogue states from separate distributions. Additionally, the sets
of actions the agents might take in each domain are also independent.

On the other hand, as depicted in Figure 5.1b if we want to benefit from transfer
learning, we must model the dialogue state in both domains, as if they were coming
from the same distribution. The sets of actions have to be shared too. The bots
specialized in the source domain must be aware of the actions in the second domain,
even if these actions are never used, and vice versa. This requirement stems from
the impossibility of reusing the neural weights if the input and output spaces differ.
Consequently, when we train the model on the source domain, the state of the
dialogue depends not only on the slots that are specific to the source, but also
on those that only appear in the target one. This insight can be generalized to a
plurality of source and target domains. The same holds for the set of actions.

Algorithm 1 Transfer Learning Pseudocode

1: procedure INITIALIZEWEIGHTS (sourceWeights, commonSlotIndices, common-
ActionIndices)
targetWeigths < RandInit()
for i in commonSlotindices do
target Weigths [i] < sourceWeights [i]

for i in commonActionIndices do
target Weigths [i] <— sourceW eights [i]

return target Weigths

When training the target domain model, we no longer randomly initializing all
weights. The weights related to the source domain - both for slots and actions -
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are copied from the source model. The pseudocode for this weight initialization is
portrayed in the Algorithm 1.
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Experiments and Results

In this chapter we present all valuable experiments and the obtained results. Our
work is based on the work from [Li et al., 2017]. For this reason, in the first part
we briefly present the baseline experiments and results. In the second part we focus

on the transfer learning experiments.

6.1 Baseline Experiments

In all baseline experiments, the Chatbot is trained on the Movie Booking domain.
The type of slots for this domain are given in Figure 6.2. The size of the training
set is 128 user goals. The maximal number of allowed dialogue turns is set to

Nmaz turns = 20, thus the negative reward for a failed dialogue is ryegqtive = —20,
1.0 1.0
0.8 08
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(a) Learning curve on a semantic level (b) Learning curve on a natural language level

Figure 6.1 — Baseline experimental results for 100 runs with a 95% confidence
interval
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while the positive reward for a successful dialogue is 7p,sitive = 40. In all experiments
we use a warm-starting and train for nepeens = 1000 epochs, each simulating
Ndialogues = 100 dialogues. This is a bit huge number of epochs to run and we
believe that the chatbot is overfitting. However, our intention was to reproduce
the results from the baseline paper.

We present the results for both levels: semantic level and natural-language level. In
Figure 6.1a the learning curve for the training on semantic level is shown, while in
Figure 6.1b the learning curve for the training on natural language level is shown.
The same experiment is repeated 100 times, thus the results are reported with a
95% confidence interval. Due to the noise introduced by the NLU and NLG unit,
the Chatbot performance on natural language level is considerably lower than the
performance on the semantic level.

6.2 Transfer Learning Experiments

In this set of experiments, we operate on the semantic level, removing the noise
introduced by the NLU and NLG units. We want to focus exclusively on the impact
of transfer learning techniques on dialog management. The details of the system
implementation! are presented in Appendix A.2.

6.2.1 Setup of Experiments

All experiments are executed using a setup template. Firstly, we train a model on
the source domain and reuse the common knowledge to boost the training and
testing performance of the model trained on a different, but similar target domain.
Secondly, we train a model exclusively on the target domain, without any prior
knowledge. This serves as a baseline. Finally, we compare the results of these two
models. We thus have two different cases:

1. Domain Overlap - the source MovieBooking and target RestaurantBooking
domains are different, but share a fraction of the slots.

2. Domain Extension - the source domain, now RestaurantBooking, is extended
to Tourist Information, that contains all the slots from the source domain
along with some additional ones.

'Link to the GitHub repository: https://github.com/IlievskiV /Master Thesis GO _ Chatbots
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6.2. Transfer Learning Experiments

Tourist Info

MovieBooking
Restaurant Booking

movie name city food type
start time number of people price range has internet
theater
date address has TV

Figure 6.2 — Slot types in the three different domains

The reason for the choice of source domain in the domain overlap case is designed
to enable a direct comparison to the results of [Li et al., 2017|, who built a GO bot
for movie booking. For the domain extension case, the only combination available
was Restaurant — Tourism. The type of slots in each domain are given in Figure
6.2. For each domain, we have a training set of 120 user goals, and a testing set of
32 user goals.

Following the above mentioned setup template, we conduct two sets of experiments
for each of the two cases. The first set shows the overall performance of the models
leveraging the transfer learning approach. The second set shows the effects of the
warm-starting jointly used with the transfer learning technique.

In all experiments, when we use a warm-starting, the criterion is to fill agent’s buffer,
such that 30 percent of the buffer is filled with positive experiences (coming from a
successful dialogue). After that, we train for nep.ens = 50 epochs, each simulating
Ndialogues = 100 dialogues. We flush the agent’s buffer when the agent reaches, for
a first time, a success rate of s.ue pasea = 0.3. We set the maximal number of
allowed dialogue turns nmqes turns to 20, thus the negative reward 7,c4ative for a
failed dialogue is —20, while the positive reward 7p,stive for a successful dialogue is
40. In the consecutive dialogue turns over the course of the conversation, the agent
receives a negative reward of ro,g0ing = —1. In all cases we set € = 0.05 to leave a
space for exploration. By using this hyperparameters, we prevent the system to
overfit and to generalize very well over the dialogue space. Finally, we report the
success rate as a performance measure.
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6.2.2 Training with Less Data

Due to labeling costs, the availability of in-domain data is the bottleneck for
training successful and high performing Goal-Oriented chatbots. We thus study
the effect of transfer learning on training bots in data-constrained environments.

From the available 120 user goals for each domain’s training set, we randomly select
subsets of 5, 10, 20, 30, 50 and all 120. We then warm-start and train both the
independent and transfer learning models on these sets. We test the performance
on both the training set (training performance) and the full set of 32 test user
goals (testing performance). We repeat the same experiment 100 times, in order to
reduce the uncertainty introduced by the random selection. Finally, we report the
success rate over the user goal portions with a 95% confidence interval.

Training Performance Over User Goals Testing Performance Over User Goals

o
~

Success Rate
o
w

0.2
0.1 —e— transfer learning 0.05 —e— transfer learning
—— no transfer learning —— no transfer learning
0.0 0.00
0 5 10 20 30 50 120 0 5 10 20 30 50 120
Number of training user goals Number of training user goals
(a) Restaurant Booking with pre-training on Movie Booking domain
Training Performance Over User Goals Testing Performance Over User Goals
0.8
0.8
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7)) (7]
n (7]
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0.2 . 0.2 :
—e— transfer learning —e— transfer learning
0.0 —— no transfer learning 0.0 —— no transfer learning
0 5 10 20 30 50 120 0 5 10 20 30 50 120
Number of training user goals Number of training user goals

(b) Tourist Info with pre-training on Restaurant Booking domain

Figure 6.3 — Average training and testing success rates with 95% confidence, for
100 runs over a randomly selected user goal portions of size 5, 10, 20, 30, 50 and
120, for both models: with and without transfer learning.

The training and testing results, in the first case of domain overlapping, are shown
in Figure 6.3a. The success rate of the model obtained with transfer learning is
65% higher than that of the model trained without any external prior knowledge.
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In absolute terms the success rate climbs on average from 30% to 50%. For the
test dataset, transfer learning improves the success rate from 25% to 30%, for a
still noteworthy 20% relative improvement.

In the case of domain extension, the difference between the success rates of the
two models is even larger (Figure 6.3b). This was expected, as the extended
target domain contains all slots from the source domain, therefore not losing any
source domain information. The overall relative success rate boost for all user goal
portions is on average 112%, i.e. a move from 40% to 85% in absolute terms. For
the test set, this difference is even larger, from 22 to 80% absolute success rate,
resulting in 263% relative boost.

These results show that transferring the knowledge from the source domain, we
boost the target domain performance in data constrained regimes.

6.2.3 Faster Learning

In a second round of experiments, we study the effects of the transfer learning in
the absence and in combination with the warm-starting phase. As warm starting
requires additional labeled data, removing it further reduces the amount of labeled
data needed. We also show that the two methods are compatible, leading to very
good joint results.

We report the training and testing learning curves (success rate over the number
of training epochs), such that we use the full dataset of 120 training user goals and
the test set of 32 user goals. We repeat the same process 100 times and report
the results with a 95% confidence interval. The performances in the first case of
domain overlapping are shown in Figure 6.4a, while for the other case of domain
extension, in Figure 6.4b. The bot using transfer learning, but no warm-starting,
shows better learning performances than the warm-started model without transfer
learning. Transfer learning is thus a viable alternative to warm starting.

However, models based on transfer learning have a significant variance, as the
learning is progressing. This happens because in many experiment runs the success
rate over all epochs is 0. In those cases, the agent does not find an optimal way to
learn the policy in the early stages of the training process. This results with filling
its experience replay buffer mostly with negative experiences. Consequently, in the
later stages, the agent is not able to recover. This makes a combination with warm
starting desirable.
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(b) Tourist Info with pre-training on Restaurant Booking domain

Figure 6.4 — Average training and testing success rates with 95% confidence, for
100 runs over the number of epochs, for both models: with and without transfer
learning. The model with transfer learning is not warm-started.

For convenience reasons, in Figure 6.5 we show all possible cases of using and
combining the transfer learning and warm-starting techniques. We can see that the
model combines the two techniques performs the best by a wide margin. This leads
to a conclusion that the transfer learning is complimentary to the warm-starting,
such that their joint application brings the best outcomes.
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(b) Tourist Info with pre-training on Restaurant Booking domain

Figure 6.5 — Success rates for all model combinations - with and without Transfer
Learning (TF), with and without Warm Starting (WS).
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i Conclusion and Future Work

In this thesis, we examined in depth the Goal-Oriented Chatbots, especially the
Reinforcement Learning-based. We show that the Transfer Learning technique can
be successfully applied to boost the performances of the RL-based Goal-Oriented
Chatbots. We do this for two different use cases: i) when the source and the target
domain overlap, and ii) when the target domain is an extension of the source
domain.

We show the advantages of the transfer learning in a low data regime for both cases.
When a low number of user goals is available for training in the target domain,
transfer learning makes up for the missing data. Even when the whole target
domain training data is available, the transfer learning benefits are maintained,
with the success rate increasing threefold.

We also demonstrate that the transfer knowledge can be a replacement of the
warm-starting period in the agents or can be combined with it for best results.

Last but not the least, we create and share two datasets for training Goal-Oriented
Dialogue Systems in the domains of Restaurant Booking and Tourist Information.

With the promising results we achieved during the work on this thesis, the following
possibilities are worth trying to investigate into:

e Study the effects of the Transfer Learning when the Chatbot is working on a
natural language level.

e Build better User Simulators, since the simulator in this work is hand-crafted
and too limited.

e To build better and more robust Dialogue State Trackers.
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Y Appendix A

A.1 Standard DQN algorithm

Algorithm 2 Deep Q-Learning with Experience Replay [Mnih et al., 2015]

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

13:

14:

procedure DQN (N, M, T, €, v)
Initialize replay memory D to capacity N
Initialize action-value function () with random weights 6
for episode in 1, M do
Initialize sequence s; = x; and preprocessed sequence ¢ = ¢(s;)
for tin 1,7 do

With probability € take a random action ay,

otherwise select a; = max, Q*(¢(s;), a;0)

Execute action a; and observe a reward r; and a new state x;;
Set $y41 = Sy, Gy, Tyr1 and preprocess ¢yr1 = ¢(T411)

Store transition (¢, a;, r¢, ¢p1) in D

Sample random minibatch of transitions (¢;, a;, rj, ¢j41) from D

Set Tj for terminal ¢;;
et y; =

vi r; +ymaxy Q*(¢j11,a;0) for non-terminal ¢;;
Perform a gradient descent step on (y; — Q(¢;, a;;6))* (Eq. 5.1)

A.2 System Implementation
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Figure A.1 — High-level overview of the system for training Goal-Oriented Chatbots
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A.2. System Implementation
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