Goal-Oriented Chatbot Dialog Management Bootstrapping with Transfer Learning

Vladimir Ilievski, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl

IJCAI, Stockholm, July 2018

Agenda

- 1. Key elements of Goal-Oriented Chatbots
- 2. Problem statement and transfer learning solution
- 3. Model
- 4. Transfer Learning
- 5. Experiments and Results

Key Elements of the Goal-Oriented (GO) Chatbots

Domain

Predefined domain of expertise:

- movie booking
- restaurant booking

Slots And Intents

User intent:

- inform
- request

Slots or intent parameters:

- date: tomorrow
- count: 2 people

Predefined Goal

Remembering user's choices.

Driving the conversation with towards achieving the goal.

Paradigms of implementations

Fully-Supervised

Sequence-to-Sequence Fashion

Encode a user request and its context

Decode a bot answer

Mimicking an expert

Require huge amounts of data

Reinforcement Learning

Based on Deep Q-Nets (DQN)

Simulate conversation

Explore the dialogue space

Limited number of dialogue turns

Require less data

Our choice

Problem: Limited Data

?

Challenge

Non trivial data requirements

Limited in-domain data

Obtaining in-domain data is hard

Solution

Leverage the domain similarity

Use Transfer Learning

Use less data

Solution: Transfer Learning

Goal-Oriented Dialog

- At time t:
 - given the user utterance Ut
 - the system replies with action at
- User utterance:
 - user's intent (e.g. inform, request info)
 - intent parameters or slots (e.g. date: today)
- System action:
 - Request a value for empty slot
 - Suggest a value based on a Knowledge Base

Goal-Oriented Dialog

- The entire dialog: slot-value pairs called semantic frames
- Two levels of execution:
 - Semantic level
 - Natural language level

Model

RL Agent

Warm Starting

Simulate Dialogues

Observations

Actions Rewards

Last user action
Last system action

Request Info Suggest Info Ongoing Dialogue
Failed Dialogue
Successful Dialogue

Experience Reply Buffer

$$\mathcal{L}(\theta) = \mathbb{E}_{s_t, a_t, r_t, s_{t+1}} \left[\left(r_t + \gamma \max_{a_{t+1}} \overbrace{Q(s_{t+1}, a_{t+1} | \theta')}^{\text{calc. by target net}} - \overbrace{Q(s_t, a_t | \theta)}^{\text{calc. by target net}} - \overbrace{Q(s_t, a_t | \theta)}^{\text{calc. by Q-net}} \right)^2 \right]$$

Without Transfer Learning Domain 1 Domain 2 Train with Domain 1 Train with Domain 2 RL Agent RL Agent Domain 1 Dependent Slots Domain 2 Dependent Slots a₁ Domain 2 Dependent Actions Domain 1 Dependent Actions

No Transfer Learning

No shared slots and actions - no shared weights

With Transfer Learning

Shared slots and actions - shared weights

Experiments Flow

Two hypothesis:

 train with less data compare success rate

Data

 train faster - compare learning rate

Pair of Domains:

- Source Domain
- Target Domain

For each domain:

- 120 training user goals
- 32 testing user goals

Two models:

- transfer learning model
- model from scratch

Domain Cases

- 1. Domain Overlapping:
 - Source Domain: Movie Booking
 - Target Domain: Restaurant Booking

2. Domain Extension:

- Source Domain: Restaurant Booking
- Target Domain: Tourist Info

Train With Less Data

- For both models we do 100 iterations of:
 - Splitting the data set in portions: 5, 10, 20, 30, 50 and 120
 - Warm-start both models
 - Train on each subset and test on the test set of 32 user goals
 - Report the training and testing success rates

Train With Less Data - Results

Domain Overlapping

Domain Extension

Faster Learning

- For both models we do 100 iterations of:
 - Train using the full set of 120 user goals
 - Test on the set of 32 testing user goals
 - Transfer learning model: does not take warm-starting
 - Model from scratch: takes warm-starting
 - Report learning curve

Faster Learning - Results

Domain Overlapping

Domain Extension

Conclusion

- Training GO Chatbots with less data
- Better performances
- Faster learning

Thanks for your attention Questions?