Goal-Oriented Chatbot Dialog Management Bootstrapping with Transfer Learning

Vladimir Ilievski¹, Claudiu Musat², Andreea Hossmann², Michael Baeriswyl²

¹IC School, EPFL, Switzerland ²Artificial Intelligence Group, Swisscom

Goal-Oriented (GO) Chatbots

Three key elements:

- 1. Goal: help users achieve a predefined goal
- 2. Domain: e.g. movie booking
- 3. Slots and intents: inform(date = 'tomorrow')

Low in-domain data availability

- Non-trivial data requirements
- Limited in-domain data
- Obtaining and labeling in-domain data is hard
 - Leverage domain similarity

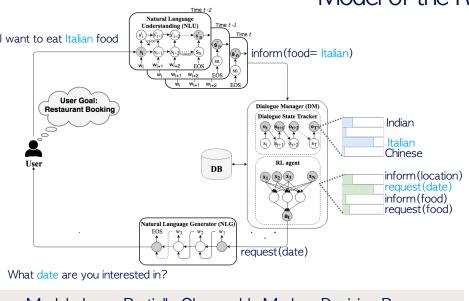
Transfer the knowledge from one SOURCE domain to another TARGET domain

RL agent: DQN based

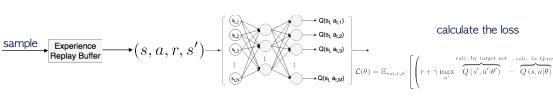
Contributions

- 1. Training GO chatbots with less data: models trained with transfer learning achieve better performance
- 2. Better GO chatbots: positive effect when all domain data is available
- 3. Transfer learning is complementary to the warm-starting technique

Model of the RL-based GO Chatbots



Simulate dialogues: fill the experience replay buffer $s = s_t \xrightarrow{\text{Q(s_t, a_{t,1})}} \text{with prob. } 1 - \epsilon \\ a = \arg\max_{a_t} Q(s_t, a_t) \\ \text{otherwise} \\ \text{take random action} \\ \text{Train the Deep Q-Net}$



Modeled as a Partially Observable Markov Decision Process

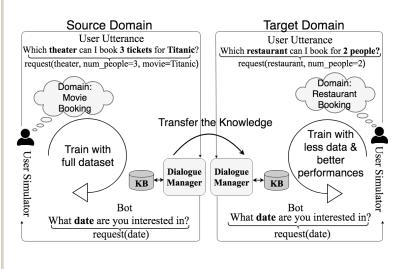
Intuition

Dialog state depends on the type of slots

Domain 1 Movie Booking		Domain 2 Restaurant Booking	
I	0	0	Where
want	0	0	in
to	0	B-City	London
book	0	0	I
tickets	0	0	can
for	0	0	find
Titanic	B-Movie	0	an
for	0	B-Food	Indian
today	B-Date	0	restaurant
somewhere	0	0	for
in	0	B-Date	tomorrow
London	B-City	I-Date	night

Share common information => Transfer the knowledge

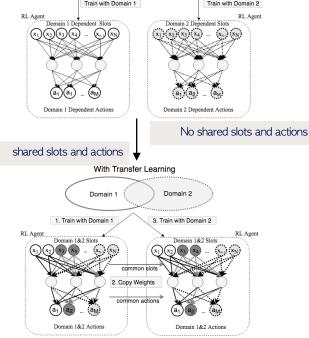
Transfer Learning



Relaxed model: no NLU and NLG units => semantic frame level execution

Semantic Frames: set of slot-value pairs

Without Transfer Learning Domain 1 Train with Domain 1



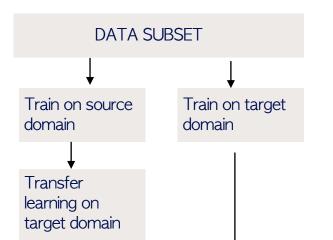
How do we experiment?

Domain overlapping

Domain extension

SOURCE: Movie booking
TARGET: Restaurant booking

SOURCE: Restaurant booking
TARGET: Tourist info



Compare performance

Results

Total of 120 training user goals and 32 testing user goals

Subset of n user goals: (5, 10, 20, 30, 50, 120)

