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Abstract: Random codes based on quasigroups (RCBQ) are cryptcodes, i.e. they are error-correcting codes, which provide
information security. Cut-Decoding and 4-Sets-Cut-Decoding algorithms for these codes are defined elsewhere. Also, the
performance of these codes for the transmission of text messages is investigated elsewhere. In this study, the authors
investigate the RCBQ's performance with Cut-Decoding and 4-Sets-Cut-Decoding algorithms for transmission of images and
audio files through a Gaussian channel. They compare experimental results for both coding/decoding algorithms and for
different values of signal-to-noise ratio. In all experiments, the differences between the transmitted and decoded image or audio
file are considered. Experimentally obtained values for bit-error rate and packet error rate and the decoding speed of both
algorithms are compared. Also, two filters for enhancing the quality of the images decoded using RCBQ are proposed.

1 Introduction
In this study, we investigate the performance and application of
random codes based on quasigroups (RCBQs) for transmission of
images and audio files through a Gaussian channel. RCBQs correct
a certain amount of errors appeared during transmission through a
noisy channel and at the same time encrypting the input messages,
i.e. they are cryptcodes. This property is an advantage of RCBQs
versus other error-correcting codes. There are few publications for
the design of algorithms that combine error-correcting codes and
ciphers [1–3], but almost all of them are for cryptographic
purposes.

RCBQs were initially proposed in [4]. Furthermore, we denote
the coding/decoding algorithms given in [4] as the standard coding/
decoding algorithm for RCBQs. The previous investigations of
RCBQ [5, 6] showed that the speed of the decoding process is one
of the biggest problems for standard RCBQs. The main reason for
this is the length of the lists (called decoding-candidate sets) since
the decoding of RCBQ is actually a list decoding. The length of the
lists depends on the parameter Bmax – the predicted maximal
number of bit errors appeared during transmission of a block. The
larger value of Bmax gives larger lists and slower decoding process.
In order to improve the decoding speed, in [7, 8] the authors
proposed two new coding/decoding algorithms: Cut-Decoding and
4-Sets-Cut-Decoding algorithms. In these algorithms, the authors
proposed coding/decoding in two (in Cut-Decoding) or four (in 4-
Sets-Cut-Decoding) parallel processes. The decoding-candidate
sets are reduced using the intersection of the sets obtained in the
parallel decoding processes. In this way, the authors obtain faster
decoding and also better results for packet-error rate (PER) and bit-
error rate (BER) probabilities.

The rest of the paper is organised in the following way. In
Section 2, we give some preliminary definitions, description of
coding/decoding algorithms of RCBQ and analysis of the
cryptographic properties of these codes. In Section 3, we describe
how our experiments are made. Several experimental results for
coding/decoding images are given and analysed in Section 4. Also,
in this section, we propose two filters for enhancing the quality of
decoded images. The experimental results obtained for audio files
are presented in Section 5. In Section 6, we make some
conclusions.

2 Description and properties of RCBQ
Random codes based on quasigroups are error-correcting codes
designed using the encryption algorithm of the totally
asynchronous cipher (TASC) implemented by quasigroup string
transformations [9]. This cipher uses a quasigroup (Q, *), i.e. a
groupoid consisting of a set (called an alphabet) Q and operation
*:Q2 → Q with the following property: for all a, b ∈ Q there exist
unique x, y ∈ Q satisfying the equations a*x = b and y*a = b. The
main body of the multiplication table of a quasigroup is a Latin
square over the set Q. For a quasigroup (Q, *) a new operation ,
called a parastrophe, can be derived from the operation * as
follows: x*y = z ⇔ y = x z. Then the algebra (Q, *, ) satisfies the
identities

x (x*y) = y and x*(x y) = y (1)

and (Q, ) is also a quasigroup.
Quasigroup string transformations are defined on a finite

quasigroup (Q, *) and they are mappings from Q+ to Q+ (Q+ is the
set of all non-empty words on Q). In RCBQs, we use two types of
quasigroup transformations defined as follows. Let l ∈ Q be a fixed
element, called a leader. For every ai, bi ∈ Q, e − and d −
transformations are defined by

el(a1a2…an) = b1b2…bn ⇔ bi + 1 = bi*ai + 1,
dl(a1a2…an) = b1b2…bn ⇔ bi + 1 = ai ai + 1,

(2)

for each i = 0, 1, …, n − 1, where b0 = a0 = l. By using the
identities (1), we have that dl(el(a1a2…an)) = a1a2…an and
el(dl(a1a2…an)) = a1a2…an. This means that el and dl are
permutations on Qn, mutually inverse. We use compositions of el
and dl in the code design.

2.1 Description of coding/decoding algorithms

At first, we describe the standard coding algorithm for RCBQs
proposed in [4]. Let M = m1m2…ml be a block of Nblock = 4 l bits
where mi ∈ Q and Q is an alphabet of 4-bit symbols (nibbles).
First, we add a redundancy as zero symbols and produce a message
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L = L(1)L(2)…L(s) = L1L2…Lm,

of N = 4 m bits (m = rs), where Li ∈ Q, L(i) are sub-blocks of r
symbols from Q. After erasing the redundant zeros from each L(i),
the message L will produce the original message M. In this way, we
obtain (Nblock, N) code with rate R = Nblock/N. The codeword is
produced after applying the encryption algorithm of TASC (given
in Fig. 1) on the message L. For this purpose, a key
k = k1k2…kn ∈ Qn should be chosen. The obtained codeword of M
is

C = C1C2…Cm,

where Ci ∈ Q. Notice that the encryption algorithm of the TASC
uses compositions of el transformations. 

In the Cut-Decoding algorithm, instead of using (Nblock, N) code
with rate R, we use two (Nblock, N /2) codes with rate 2R for coding/
decoding the same message of Nblock bits. Namely, for coding, we
apply the same encryption algorithm (given in Fig. 1) two times, on
the same redundant message L using different parameters (different
keys or quasigroups). In this way, we obtain the codeword of the
message as a concatenation of two codewords of N /2 bits. The
code rate is again R = Nblock/N.

In the 4-Sets-Cut-Decoding algorithm, we use four (Nblock, N /4)
codes with rate 4R, on the same way as in coding with the Cut-
Decoding algorithm and the codeword of the message is a
concatenation of four codewords of N /4 bits (code rate
R = Nblock/N).

The decoding in all three cases is actually a list decoding and it
is described below.

In the standard decoding algorithm for RCBQs, after
transmission through a noisy channel (for our experiments we use
Gaussian channel), the codeword C will be received as message
D = D(1) D(2)…D(s) = D1D2…Dm where D(i) are blocks of r symbols
from Q and Di ∈ Q. The decoding process consists of four steps: (i)
procedure for generating the sets with a predefined Hamming
distance, (ii) inverse coding algorithm, (iii) procedure for
generating decoding candidate sets and (iv) decoding rule.

Let Bmax be a given integer, which denotes the expected maximal
number of errors occur in a block during transmission. The
probability that at most t bits in Di are not correctly transmitted is

P(Pb; t) = ∑
k = 0

t 4r
k Pb

k(1 − Pb)4r − k,

where Pb is the probability of bit-error in a Gaussian channel. Then
P(Pb; Bmax) is the probability that at most Bmax errors occur in a
block during transmission. We generate the sets
Hi = {α α ∈ Qr, H(D(i), α) ≤ Bmax}, for i = 1, 2, …, s, where
H(D(i), α) is the Hamming distance between D(i) and α.

The decoding candidate sets S0, S1, S2,…, Ss, are defined
iteratively. Let S0 = (k1…kn; λ), where λ is the empty sequence. Let
Si − 1 be defined for i ≥ 1. Then Si is the set of all pairs
(δ, w1w2…w4ri) obtained by using the sets Si − 1 and Hi as follows (wj
are bits). For each element α ∈ Hi and each (β, w1w2…
w4r(i − 1)) ∈ Si − 1, we apply the inverse coding algorithm (i.e.
decryption algorithm given in Fig. 2) with input (α, β) (the
decoding algorithm uses compositions of dl transformations). If the
output is the pair (γ, δ) and if both sequences γ and L(i) have the
redundant zeros in the same positions, then the pair
(δ, w1w2…w4r(i − 1)c1c2…cr) ≡ (δ, w1w2…w4ri) (ci ∈ Q) is an element
of Si. 

In the Cut-Decoding algorithm, after transmission through a
noisy channel, we divide the outgoing message D = D(1)D(2)…D(s)

into two messages D1 = D(1)D(2)… D(s/2) and D2 = D(s/2 + 1)

D(s/2 + 2)…D(s) with equal lengths and we decode them parallelly

with the corresponding parameters. In this decoding algorithm, we
make modification in the procedure for generating decoding
candidate sets. Let Si

(1) and Si
(2) be the decoding candidate sets

obtained in the ith iteration of both parallel decoding processes,
i = 1, …, s. Then, before the next iteration, we eliminate from Si

(1)

all elements whose second part does not match with the second part
of an element in Si

(2), and vice versa. In the (i + 1)th iteration both
processes use the corresponding reduced sets Si

(1) and Si
(2).

In [8], the authors proposed four different versions of decoding
with the 4-Sets-Cut-Decoding algorithm. The best results are
obtained using 4-Sets-Cut-Decoding algorithm #3. Here, we use
only this version and further on we briefly describe it. After
transmission through a Gaussian channel, we divide the outgoing
message D = D(1)D(2)…D(s) into four messages D1 = D(1)D(2)…D(s/4),
D2 = D(s/4 + 1)D(s/4 + 2)…D(s/2), D3 = D(s/2 + 1)D(s/2 + 2)… D(3s/4) and
D4 = D(3s/4 + 1)D(3s/4 + 2)…D(s) with equal lengths and we decode them
parallelly with the corresponding parameters. Similarly, as in the
Cut-Decoding algorithm, in each iteration of the decoding process,
we reduce the decoding candidate sets obtained in four parallel
decoding processes. In the 4-Sets-Cut-Decoding algorithm #3, we
generate decoding candidate sets in the following way.

Step 1. Let S0
(1) = (k1

(1)…kn
(1); λ), …, S0

(4) = (k1
(4)…kn

(4); λ), where λ is
the empty sequence and k1 = k1

(1)…kn
(1), …, k4 = k1

(4)…kn
(4) are the

initial keys used for obtaining four codewords, respectively.
Step 2. Let Si − 1

(1) , …, Si − 1
(4)  be defined for i ≥ 1.

Step 3. Let four decoding candidate sets Si
(1),…, Si

(4) be obtained in
four parallel decoding processes, in the same way as in the
standard RCBQ.
Step 4. Let V1 = {w1w2…wr ⋅ a ⋅ i (δ, w1w2…wr ⋅ a ⋅ i) ∈ Si

(1)},…,
V4 = {w1w2…wr ⋅ a ⋅ i (δ, w1w2…wr ⋅ a ⋅ i) ∈ Si

(4)} and V =
V1 ∩ V2 ∩ V3 ∩ V4.

Fig. 1  Encryption algorithm
 

Fig. 2  Decryption algorithm
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If V = ∅ then V = (V1 ∩ V2 ∩ V3) ∪ (V1 ∩ V2 ∩ V4) ∪
(V1 ∩ V3 ∩ V4) ∪ (V2 ∩ V3 ∩ V4).
Step 5. For each j = 1, 2, 3, 4 and for each (δ, w1w2…wr ⋅ a ⋅ i) ∈ Si

( j),
if w1w2…wr ⋅ a ⋅ i ∉ V  then Si

( j) ← Si
( j) {(δ, w1w2…wr ⋅ a ⋅ i)}.

Step 6. If i < s/4 then increase i and go back to Step 3.

After the last iteration, if all reduced sets Ss/2
(1) , Ss/2

(2)  in the Cut-
Decoding algorithm (or Ss/4

(1) , Ss/4
(2) , Ss/4

(3) , Ss/4
(4)  in 4-Sets-Cut-Decoding)

have only one element with the same second component
w1…wr ⋅ a ⋅ s/4, then L = w1…wr ⋅ a ⋅ s/2 (or L = w1…wr ⋅ a ⋅ s/4). In this
case, we say that we have a successful decoding. If the decoded
message is not the correct one then we have an undetected-error. If
the reduced sets obtained in the last iteration have more than one
element then we have a more-candidate-error. In this case, we
apply the following heuristic: we randomly select a message from
the reduced sets in the last iteration and we take this message as the
decoded message. If we obtain Si

(1) = Si
(2) = ∅ in some iteration of

Cut-Decoding or Si
(1) = Si

(2) = Si
(3) = Si

(4) = ∅ in some iteration of the
4-Sets-Cut-Decoding algorithm, then the process will stop (a null-
error appears). However, if we obtain at least one non-empty
decoding candidate set (in step 3) then the decoding continues with
the non-empty sets (the reduced sets are obtained by the
intersection of the non-empty sets only). If we obtain only one non-
empty set, in some iteration, then the decoding continues with the
non-empty set using the standard RCBQ decoding algorithm.

In RCBQ, unsuccessful decoding with null-error occurs when
more than predicted Bmax bit errors appear during transmission of
some blocks. Some of these errors can be eliminated if we cancel a
few of the iterations of the decoding process and reprocess all of
them or part of them with a larger value of Bmax. Therefore, in [5],
the authors have proposed a method for decreasing the number of
null-errors by backtracking. In this method, if an empty set is
obtained in some iteration (e.g. ith), then k previous iterations
((i − 1)th, (i − 2)th, …, (i − k)th ) are cancelled. After that the first
of cancelled iterations ((i − k)th) is reprocessed with
Bmax = Bmax + 1 or Bmax = Bmax + 2, and the next iterations continue
with the old value of Bmax. With this procedure, only part of null-
errors will be eliminated since we cannot know exactly in which
iteration the correct sub-block does not enter in the decoding
candidate set and exactly how many transmission errors (Bmax + 1,
Bmax + 2 or more) occur in this sub-block. Also, we must note that
using backtracking in some cases, we can obtain more-candidate-
error instead of null-error. A similar method with backtracking in
the case of more-candidate error is proposed in [7]. In this method,
if the decoding process ends with more elements in the reduced
decoding-candidate sets after the last iteration then a few of the
iterations are cancelled and the first cancelled iteration is
reprocessed using a smaller value of Bmax (the next iterations use
the old value of Bmax).

In the experiments, we use the following combination of these
two methods with backtracking. If the decoding ends with null-
error, then the last two iterations are cancelled and the first of them
is reprocessed with Bmax + 2 (the next iterations use the previous
value of Bmax). If the decoding ends with more-candidate-error,
then the last two iterations of the decoding process are cancelled
and the penultimate iteration is reprocessed with Bmax − 1. In the
decoding of a message, we use at most one backtracking for null-
error and at most one backtracking for more-candidate-error.

2.2 Cryptographic properties of RCBQ

The encryption and decryption algorithms are based on quasi-
group string transformations (e − and d −transformation).
Therefore, here, we consider some cryptographic properties of
quasigroups and quasigroups string transformations.

One of the most important cryptographic properties is the
uniform distribution of the symbols in the encrypted string, which
provides resistance against statistical attack. This property of quasi-
group e −transformation is addressed in [10], where the authors
proved the following property.

Let (Q, *) be a given finite quasigroup and p = (p1, p2, …, pQ )
be the probability distribution of the symbols in Q, such that pi > 0
for each i and ∑

i
pi = 1. Then the following theorem (given in

[10]) holds.
 
Theorem 1: Consider a random string α = a1a2…an (ai ∈ Q)

drawn i.i.d. according to the probability distribution p. Let β be
obtained after k applications of an e −transformation on α. If n is a
large enough integer then the distribution of substrings of β of
length t is uniform for each 1 ≤ t ≤ k. (We note that for t > k the
distribution of substrings of β of length t is not uniform.)

Another important cryptographic property of the encrypted
string is its period. In [11], the authors proved that the period of
quasigroup processed strings grows at least linearly and the
increasing of the period depends on the chosen quasigroup. More
about the period of the quasigroup processed string is given in [12].

Most cryptographic properties of quasigroup processed strings
depend on the chosen quasigroup. Therefore, we give several
cryptographic properties that are important for the choice of the
quasigroup used in the encryption algorithm.

A quasigroup (Q, *) of order n is shapeless if and only if it is
non-idempotent, non-commutative, non-associative, it has neither
left nor right unit, it does not contain proper sub-quasigroups, and
there is no k < 2n for which identities of these kinds are satisfied

x(…*(x
k

*y)) = y, y = ((y*x)*…)*x .
k

(3)

The condition k < 2n for identities (3) means that any left and
right translation of quasigroup (Q, *) should have the order
k ≥ 2n + 1. For cryptographic purposes, it is preferable to choose a
shapeless quasigroup [9].

The classifications of finite quasigroups are very important for
the successful application of quasigroups in cryptography and
coding theory. It is a difficult problem since the number of
quasigroups (even of small order) is very large.

A classification of quasigroups by graphical presentation of
quasigroup processed strings is given in [13]. In that paper, the
authors classified the set of all quasigroups of given finite order n
into two disjoint classes, the class of so-called fractal quasigroups
(if the graphical presentation of quasigroup processed strings has a
structure), and the class of so-called non-fractal quasigroups (if the
graphical presentation of quasigroup processed strings has no
structure). The class of fractal groups is not recommended to be
used for designing cryptographic primitives.

In order to obtain RCBQs with good cryptographic properties,
the quasigroup used in our experiments is chosen to satisfy the
above properties. This means that the chosen quasigroup is
shapeless and non-fractal quasi-group.

3 Experiments
In this section, we explain how the experiments for the
transmission of images and audio files through a Gaussian channel
are made. All experiments are for code (72, 576) with rate R = 1/8,
Bmax = 5, different values of signal-to-noise ratio (SNR) and the
following parameters:

• In the Cut-Decoding algorithm – redundancy pattern: 1100 1100
1000 0000 1100 1000 1000 0000 1100 1100 1000 0000 1100 1000
1000 0000 0000 0000, for rate 1/4 and two different keys of 10
nibbles.
• In 4-Sets-Cut-Decoding algorithms – redundancy pattern: 1100
1110 1100 1100 1110 1100 1100 1100 0000 for rate 1/2 and four
different keys of ten nibbles.
• In all experiments, we used the same quasigroup of order 16 on Q
given in [8].

In all experiments (for different values of SNR in the channel),
we consider the differences between the transmitted and decoded
image or audio file. Also, we compare experimentally obtained
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values for bit-error probability (BER) and packet-error probability
(PER) and the duration of the decoding processes with both
algorithms.

In all decoding algorithms for RCBQ, when a null-error
appears, the decoding process ends earlier and only a part of the
message is decoded. Therefore, in the experiments with images and
audio files, we use the following solution. In the cases of a null-
error (all reduced sets are empty in some iteration), we take the
strings without redundant symbols from all elements in the sets
from the previous iteration and find their maximal common prefix
substring. If this substring has k symbols then in order to obtain a
decoded message of l symbols, we take these k symbols and add
l − k zero symbols at the end of the message.

In the next sections, we present and compare the results
obtained using both algorithms for RCBQ with modifications for
reducing the number of unsuccessful decoding.

4 Experimental results for images
In the experiments for image transmission, we use the image of
‘Lenna’, given in Fig. 3a. In the same figure, the second image is
an encrypted image of Lenna (using the encryption algorithm given
in Section 2.1) before transmitting through a Gaussian channel. It
is apparent that the algorithm crypts the images. After that, the
image is transmitted through the channel (with different values of
SNR) and the corresponding decoding algorithm is applied. In
Figs. 4–8, we present images obtained for SNR = − 2, −1, 0 and
1, respectively. In each figure, the first image is obtained after
transmission through the channel without using any error-
correcting code, the second image is obtained using the Cut-
Decoding algorithm and the third one – using the 4-Sets-Cut-
Decoding algorithm. 

From the figures, we can see that the Cut-Decoding and 4-Sets-
Cut-Decoding algorithms correct many errors that appeared during
transmission. Also, we obtain less damages (lines) of the images
with the 4-Sets-Cut-Decoding algorithm than with the Cut-
Decoding algorithm.

The values of BER and PER obtained with both algorithms
(presented in Tables 1 and 2) confirm our conclusions from the
analyses of images. In these tables, BERcut and PERcut denote the
probabilities for the Cut-Decoding algorithm and BER4‐sets and
PER4‐sets – corresponding probabilities obtained by using the 4-Sets-
Cut-Decoding algorithm. From the results in the tables, we can see
that for all values of SNR, BER4‐sets is more than three times smaller
than BERcut. Also, the packet-error probabilities obtained with the
4-Sets-Cut-Decoding algorithm are more than two times smaller
than the probabilities obtained with the Cut-Decoding algorithm. 

As we explain before when null-error appears we add l − k zero
symbols at the end of the message and this makes horizontal black
lines on the image. The horizontal white and grey lines are
obtained in the case of more-candidate-error when the randomly
selected message from the reduced sets in the last iteration differs
from the original message. On the other hand, the images obtained

Fig. 3  Original and encrypted image
(a) Original image, (b) Encrypted image

 

Fig. 4  SNR = − 3
 

Fig. 5  SNR = − 2
 

Fig. 6  SNR = − 1
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without using error-correcting codes do not have these lines, but
the entire images have damaged pixels from incorrectly transmitted
symbols.

In Tables 3 and 4, probabilities of null-error (PERnull) and
more-candidate-error (PERmore − candidate) are given. From these
tables, we can conclude that with the Cut-Decoding algorithm, we
obtain a much greater number of unsuccessful decodings with null-
error than with the 4-Sets-Cut-Decoding algorithm, but the number
of more-candidate-errors is smaller. Therefore, the images decoded
with the Cut-Decoding algorithm have more black lines than the
images decoded with the 4-Sets-Cut-Decoding algorithm. Also,
most of the lines in the third images (obtained with the 4-Sets-Cut-
Decoding algorithm) are white or grey. 

Also, we analysed the speed of two algorithms and concluded
that the 4-Sets-Cut-Decoding algorithm is faster than the Cut-
Decoding algorithm. The speed of the algorithms depends on the
value of SNR and it increases as SNR increases. For example, for
SNR = 1, the 4-Sets-Cut-Decoding algorithm is two times faster
than the Cut-Decoding algorithm, and for SNR = − 2, it is 16
times faster.

In order to clear some of the damages (horizontal lines) on the
images, in the next subsection, we propose two filters that visually
enhance pixels damaged by null-errors and more-candidate-errors.

4.1 Filter for images decoded by cryptcodes based on quasi-
groups

For repairing damage, a filter has to locate where it appears.
Locating of the null-errors is easy since we add zero symbols in
the place of the undecoded part of the message. In order to locate
more-candidate-errors, we change the decoding rule for these
kinds of errors. Instead of a random selection of a message from
the reduced sets in the last iteration, we take a message of all zero
symbols as a decoded message. Now, one pixel is considered as
damaged if it belongs to a zero sub-block with at least four
consecutive zero nibbles. The basic idea in the definition of the
filters is to replace the damaged pixel intensity value with a new
value taken over a neighbourhood of fixed size. In the first one, we
use the median of the non-zero grey values of the surrounding
pixels, so our filter is a median filter.

For each damaged pixel in the position (i,j), the filter uses the
following algorithm:

1. Take a 3 × 3 region centred around the pixel (i,j).
2. Sort the non-zero intensity values of the pixels in the region in

the ascending order.
3. Select the middle value (the median) as the new value of the

pixel (i,j).

In Figs. 9–12, we present images obtained with the Cut-
Decoding and 4-Sets-Cut-Decoding algorithm before and after the
application of the proposed filter for SNR = − 2, − 1, 0, and 1,

Fig. 7  SNR = 0
 

Fig. 8  SNR = 1
 

Table 1 Experimental results for BER
SNR BERcut BER4‐sets

−3 0.31351 0.10411
−2 0.13257 0.03487
−1 0.04029 0.01233
0 0.00990 0.00306
1 0.00161 0.00040

 

Table 2 Experimental results for PER
SNR PERcut PER4‐sets

−3 0.52898 0.24045
−2 0.24265 0.08019
−1 0.07429 0.02622
0 0.01675 0.00645
1 0.00316 0.00082

 

Table 3 Experimental results with Cut-Decoding
SNR PERnull PERmore − candidate

−3 0.52719 0.00096
−2 0.24155 0.00041
−1 0.07402 0.00027
0 0.01675 0
1 0.00316 0

 

Table 4 Experimental results with 4-Sets-Cut-Decoding
SNR PERnull PERmore‐candidate

−3 0.07278 0.10588
−2 0.02691 0.03131
−1 0.01181 0.00796
0 0.00247 0.00288
1 0.00041 0.00027
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respectively. In each figure, first two images are for Cut-Decoding
(without and with the filter, respectively) and last two images for
the 4-Sets-Cut-Decoding algorithm (without and with the filter). 

From the presented images, we can notice that the proposed
filter provides a great improvement of the images for all considered
values of SNR. Also, this filter gives better results for the images
obtained with the Cut-Decoding algorithm than with the 4-Sets-
Cut-Decoding algorithm. The reason for this is the larger number
of undetected-errors produced with the 4-Sets-Cut-Decoding
algorithm.

Notice that instead of the median filter, some other filters more
suitable for hardware implementation can be used. For example,
we can use the average filter given by the following algorithm:

1. take a 3 × 3 region centred around the pixel (i,j);
2. calculate the average of the selected pixels and take this value

as the new value of the pixel (i,j).

For smaller SNR, we recommend the median filter since it gives
better results for images with larger number of damaged pixels. In
Fig. 13, we present image transmitted through the Gaussian

channel for SNR = − 2 filtered by the median (the first image) and
average filter (the second image). 

It is apparent that the median filter gives better results. For a
larger value of SNR, both filters give similar results, so the average
filter can be used, too.

Fig. 9  SNR = − 2
 

Fig. 10  SNR = − 1
 

Fig. 11  SNR = 0
 

Fig. 12  SNR = 1
 

Fig. 13  Median and average filter
 

6 IET Commun.
© The Institution of Engineering and Technology 2019



5 Experimental results for audio files
In these experiments, we use an audio, which consists of one 16-bit
channel with a sampling rate of 44,100 Hz and is a part of
Beethoven's ‘Ode to joy’ with a total length of ∼4.3 s.

Here, we also present experimental results for different values
of SNR obtained using the Cut-Decoding and 4-Sets-Cut-Decoding
algorithms. In all experiments, we consider the differences between
the sample values of the original and transmitted signals. We
present these analyses on graphs where the sample number in the
sequence of samples consisting the audio signal is on the x-axes
and the value of the sample is on the y-axis. In Fig. 14, the original
audio samples are presented. The samples for SNR = − 1 are
given in Fig. 15. The first graph in this figure is obtained when the
audio signal is transmitted through the channel without using any
error-correcting code, the second graph is for Cut-Decoding and

the third one is for the 4-Sets-Cut-Decoding algorithm. In Fig. 16,
we present only two graphs per SNR = 0 (a) and SNR = 1 (b): the
first one is for Cut-Decoding and the second is for the 4-Sets-Cut-
Decoding algorithm. The graphs obtained when the audio signal is
transmitted through the channel without using any error-correcting
code are very similar to the first graph in Fig. 15 and we do not
present them. 

From the figures, it is evident that for all values of SNR, the
results obtained using the 4-Sets-Cut-Decoding algorithm are better
than the results obtained with the Cut-Decoding algorithm.

For SNR = − 3 and −2, experiments with the Cut-Decoding
algorithm did not finish in real-time since during decoding of some
messages we obtain a large number of elements in the decoding-
candidate sets. Therefore, we conclude that for SNR < − 1 there is
no sense to make experiments with this algorithm and in Fig. 17,
we present the results only for the 4-Sets-Cut-Decoding algorithm.
The first graph on these figures is obtained when the audio signal is
transmitted through the channel without any error-correcting code
and the second one when the 4-Sets-Cut-Decoding algorithm is
used. 

In Tables 5 and 6, experimental results for BER and PER are
given. These tables confirm our conclusions obtained from the
figures. We can see that for the decoding audio files transmitted
through a Gaussian channel, the 4-Sets-Cut-Decoding algorithm is
better than the Cut-Decoding algorithm. 

All audio files obtained in our experiments for transmission
through a Gaussian channel with different SNR can be found in the
following link:

Fig. 14  Original audio samples
 

Fig. 15  SNR = − 1
 

Fig. 16  Results for SNR = 0 and SNR = 1
(a) SNR = 0, (b) SNR = 1

 

Fig. 17  Results for SNR = − 3 and −2
(a) SNR = − 3, (b) SNR = − 2

 
Table 5 Experimental results for BER

SNR BERcut BER4‐sets

−3 / 0.10386
−2 / 0.03658
−1 0.04741 0.01122
0 0.01114 0.00281
1 0.00175 0.00052

 

Table 6 Experimental results for PER
SNR PERcut PER4‐sets

−3 / 0.24074
−2 / 0.08451
−1 0.08623 0.02499
0 0.02208 0.00632
1 0.00383 0.00113
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https://www.dropbox.com/sh/hwhk63ylgukvfq9/
AACymAdyUBE1K_QJ-1SM39Jea?dl=0.

If one listen to these audio files, he/she would notice that as
SNR decreases, the noise increases, but the original melody can be
listened completely in the background.

In order to explain the reason behind this phenomena, we
calculate the energy spectral density of the audio signal. The
energy spectral density shows how the energy of the signal is
distributed with frequency and it is defined as

E = ∫
−∞

+∞
s(t)

2

dt,

where s is the signal. Since we consider finite discrete signals, in
this case 4.3 s long audio signal, using Parseval's theorem, we can
express the energy spectral density in the frequency domain using
Fourier analysis, i.e.

∫
−∞

+∞
s(t)

2

dt = ∫
−∞

+∞
s^( f )

2

d f ,

where s^( f ) is the Fourier transformation of the signal s.
Therefore, using the fast Fourier transform algorithm from the

MatLab's signal processing toolbox, in Fig. 18, we plot the energy
densities for the sounds. The first graph is for the original sound,
the second is for transmitted sound in the channel with
V1 ∩ V2 ∩ V3 ∩ V4, without using the error-correcting code and the
last two graphs are for the same sound coded/decoded using the
Cut-Decoding and 4-Sets-Cut-Decoding algorithms, respectively. 

From the graphs, it is evident that after the transmission of the
signal, the frequencies carrying the most of the signal's energy are
still present, although a bit altered, all other energies are amplified.
Consequently, this is the reason why we can still hear the original
melody in the background intermixed with the noisy sounds.

The graphs confirm that the noise is reduced when Cut-
Decoding, especially the 4-Sets-Cut-Decoding algorithm is used.
The same results are obtained for other values of SNR.

The previous link also contains the audio file crypt_audio.wav
obtained by encrypting the original audio. In this encrypted file, we
cannot hear anything from the original melody, which confirms
that the algorithm also crypts audio files.

6 Conclusion
From all experiments made for investigation of the performances
of Cut-Decoding and 4-Sets-Cut-Decoding algorithms for RCBQ
for transmission of images and audio files through a Gaussian
channel, we can conclude that these two algorithms show good
performances in all experiments. We can see that for all values of
SNR, a great part of errors appeared during the transmission are

corrected. Also, from the comparison, we can conclude that the 4-
Sets-Cut-Decoding algorithm is better than the Cut-Decoding
algorithm. Namely, the values of PER and BER obtained by using
the 4-Sets-Cut-Decoding algorithm are more than three times
smaller than values obtained by using the Cut-Decoding algorithm.
Moreover, the 4-Sets-Cut-Decoding algorithm in all experiments is
more than two times faster than the Cut-Decoding algorithm. Also,
we define filters for improving the quality of decoded images. We
must note that the encryption algorithm in the design of these codes
provides information security of the transmitted data. This can be
concluded from the considered cryptographic properties of the
algorithm and the encrypted image and audio file.

Due to the good properties of the described codes, they can be
successfully applied to different usage scenarios. One practical
usage scenario might be using the codes in highly noisy wireless
channels, where the code naturally fits in the data link layer,
covering both coding and encryption purposes in one scheme. The
proposed codes can also be used in satellite digital video
broadcasting (DVB-S) coding and encryption schemes. Currently,
DVB-S and DVB-S2 use two layers of encoding schemes,
followed by an encryption scheme. Our coding approach replaces
these layers of coding and encryption into a single scheme
implementing all required features.

As future work, we will consider the performances of RCBQ
for correction of burst errors, especially when a Rayleigh fading
channel is used.
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