

PROJECT REPORT

NAME OF THE PROJECT:

An Android application for monitoring the problems in

the ALICE Grid

Prepared by: Supervisor:

Vladimir Ilievski, CERN summer student Predrag Buncic

CERN, august 2014

 An Android app for monitoring the problems in the ALICE Grid

2

Abstract

This project is developing an Android application, which will help in monitoring of

the ALICE Grid of computers. It uses a lot of Android related technologies, Cloud solutions

and server side programming. It is supposed all users to get notifications for the events that

are from their interest. This application will contribute to notify the users in real time, in

which way the existing problems will be solved faster.

Contents page

Introduction ……… 3

1. Creating the model and designing the user interface……………………..……………………………… 3

2. Creating Content Provider and XML parser……………………………………………………………………..6

3. Configuring Google Cloud Messaging service…………………………………………………………………..6

4. Implementing synchronization adapter framework ………………………………………………………..7

Conclusions and future work……………………………………………………………………………………………….8

 An Android app for monitoring the problems in the ALICE Grid

3

Introduction

 ALICE experiment possesses a computing infrastructure consisting from more than

100 sites. In this kind of environment errors can appear in every possible moment. The aim

of this application is to help on the site administrators to prevent the errors as much as fast

they can. Official ALICE monitoring system is on the web page http://alimonitor.cern.ch/. On

the web page exists an alert XML feed which is automatically generated structure,

describing the current problems in the computer sites around the world. Using this feed, the

application instantaneously notifies the users when new problem arise. The application is

consisted of many modules specific for the Android and a lot of modern technologies.

Main mechanism for notifying the users relies on Google Cloud Messaging service

which provides reliable way for delivering notifications. The model in this application is

Notification, an entity that contains all of the necessary data. With the help of Broadcast

Receiver, the application listens for an event that there is something new in the alert XML

feed. The occurrence of this event triggers the Synchronization Adapter to begin with

downloading, processing and filtering the content from the web. Because the content is in

XML format, special module parses the content and creates entities from the model

(Notification). Then, with the using of Content Provider this entities are inserted into the

phone data base. In the end, all of these entities are nicely presented on the screen with by

means of Activities.

Content

1. Creating the model and designing the user interface

The model in this application is named Notification. The data encapsulated in the model

is consistent with the data provided by the XML feed on http://alimonitor.cern.ch/. Namely,

the model is consisted of: id, tittle, link, summary, content, category, starting time, ending

time, status, importance and novelty flag.

The id uniquely identifies the notification, the title gives the initial information about the

notification together with the link. Summary is brief description of the problem, while

content is extensive description. The category of the notification is related to the nature of

the problem, so we have notifications for problems with the storage, proxies, site services

and network. Also there are informational and category for everything else. The starting

time denotes when the problem occurred, and the ending time when the problem was

solved. The status is the flag that marks does the problem is solved or not, the importance

flag indicates the importance of the problem for a given user and the novelty flag serves to

remind the user that the notification is new for him.

http://alimonitor.cern.ch/
http://alimonitor.cern.ch/

 An Android app for monitoring the problems in the ALICE Grid

4

Having the model as a baseline, we can build the user interface, the interactions and all

of the manipulations that user can do. The user interface is consisting of three screens. One

screen is for showing all notifications, the second for showing the details about the

particular notification and the last one for setting the user’s options. Due to the software

reusability, the first two screens are composed of two fragments.

As a specific platform, Android separates the building of the user interface and the code

behind the user interface. So, the structure of the user interface is written in XML, and then

reference to this code is passed to the java classes later.

First I’ve created the fragment for the top of the screens. The class for this fragment is

named TopFragment.java and the XML is named top_fragment.xml. Then in the

onCreateView () method of the TopFragment.java class we just bind the user interface. In

the end the top fragment looks like this:

Other fragment is for showing the notifications in one list of scrollable items, so it is very

simple and is consisting of only one ListView element. Because every Notification is

constituted from different information it is needed to make one general pattern for showing

every single Notification in one of the list’s item. Special classes named Adapters act as a

bridge between the lists and the underlying data for that view. So, I’ve made a special

adapter for this named NotificationAdapter.java, which defines the view of every item in the

list depending on the information in the particular Notification. This adapter as a pattern

uses the XML file for one item which is named notification_item.xml. In this way, one item

of the list will look like this:

After creating the two fragments, I’ve made the screen for showing all of the

Notifications. Finally the screen looks like this:

 An Android app for monitoring the problems in the ALICE Grid

5

After clicking on one of the items in the list, the screen for showing the details about

the notification is appearing. This screen also uses the TopFragment and other graphical

interfaces to show the content. This is the look of the screen:

 An Android app for monitoring the problems in the ALICE Grid

6

The third screen is still in developing phase.

2. Creating Content Provider and the XML parser

In order to insert the notifications in the mobile data base there must be Content

Provider, a helper class with which you can insert, delete, update and query in the database.

For this purpose I’ve made a class named NotificationContentProvider.java with a lot of

helper methods, only to be able to manipulate data. This class will serve me to insert the

notifications once the application will download them from the alert XML feed. But, the

content that will be downloaded is in XML format, with special XML tags, so there is a need

for creating module that will parse the content and will create entities from that. One

notification as a XML code is represented as:

<entry>

 <id>161538</id>

 <title type="html">Storages:[ALICE::ZA_CHPC::SE]-ADD test

fails</title>

 <link rel="alternate"

href="http://alimonitor.cern.ch/stats?page=SE/table"/>

 <published>2014-07-25T12:45:20.000Z</published>

 <updated>2014-07-25T12:45:20.000Z</updated>

 <summary type="html">Something</summary>

 <content type="html">Something</content>

 <category term="Storages">Storage</category>

</entry>

So I’ve build special purpose class named AlimonitorXmlParser.java. This class contains

special functions for parsing the information from every tag. With this piece of data it

creates objects from the Notification class and passes it to the Content Provider class.

3. Configuring Google Cloud Messaging Service

Google Cloud Messaging is the technology that enables reliable and very easy way to

send data from servers to Android applications. This could be a lightweight message telling

the Android application that there is new data to be fetched from server. Prerequisite for

this is the device must be already connected to the network. For this reason, the application

contains a separate Broadcast Receiver named NetworkReceiver.java, to listen for network

connectivity changes.

When the device is connected to the network, first it sends a sender id and application

id to the GCM server for registration. Upon successful registration, the GCM server issues a

registration id to the Android device. After receiving registration id, the device will send the

 An Android app for monitoring the problems in the ALICE Grid

7

registration id to our server. Then our server will store registration id in the database for

later usage. So, whenever push notification is needed, our server sends a message to the

GCM server along with the device registration id. Then the GCM server will deliver that

message to the respective mobile device. This is the main mechanism behind GCM.

For this to work we need to configure our application. First I’ve created new project on

https://console.developers.google.com named Alimonalisa. Then from API & auth section

I’ve activated Google Cloud Messaging for Android API:

After that, from Credentials section I’ve generated API key. This API key is needed for

authentication of the 3-rd party server:

Upon successful API key generation, I’ve created GCMClientServices.java class. With

a help of this class, the app check the device for a compatible Google Play services APK,

register with GCM servers and store the registration id for future use. The next thing was

creating GCM Broadcast Receiver. So, I’ve created GcmBroadcastReceiver.java class and

with this module, the application listens for event that there is something new on the

server. For all of this to work in the AndroidManifest.xml I’ve put all of the necessary

permissions. With all of these steps the client side of the Google Cloud Messaging system is

done.

Only for testing purposes, I’ve downloaded almost prepared code for the server side.

I’ve built and booted the server using the Google App Engine and Maven technologies. In

the server side code I’ve just put the previously generated API key for the authentication of

the server with GCM. In the end I tested all of this, and it was successful.

4. Implementing Synchronization Adapter Framework
This framework helps manage and automate data transfers, and coordinates

synchronization operations across different apps.

https://console.developers.google.com/

 An Android app for monitoring the problems in the ALICE Grid

8

The sync adapter framework assumes that the sync adapter transfers data between

device storage associated with an account and server storage that requires login access. For

this reason we need to provide a component called an authenticator, even if the app

doesn’t use accounts like in this case, the authenticator component just contains stub

method implementations. To add a stub authenticator component, I’ve created a class

Authenticator.java that extends AbstractAccountAuthenticator.java class.

In order for the sync adapter framework to access our authenticator, there is a bound

Service for that, named GenericAccountService.java. The service provides an Android binder

object that allows the framework to call our authenticator. To complete this process of

authentication, there must be an authenticator metadata file that describes the component,

named authenticator.xml.

The synchronization adapter encapsulates the code for the tasks that transfers data

between the device and a server. Based on triggers in our application the synchronization

adapter runs the code in the sync adapter component. All this code is in the method

onPerformSync () method in NotificationSyncAdapter.java class. In this method, the app

downloads the content from Alimonitor XML feed and passes the content to the XML

parser. In order to access code in onPerformSync () method the application contains a

bound Service named NotificationSyncService.java. The sync adapter framework requires

each sync adapter to have an account type. This type of account is created with a help of

AccountManager’s method named addAccountExplicitly ().

The last things to do were to create sync adapter metadata file named syncadapter.xml

and to declare the adapter in the Manifest with all necessary tags.

After completing all of the previous steps, I’ve just put all the code for running the sync

adapter in the method onReceive () in the GcmBroadcastReceiver.java class that I wrote

while configuring GCM.

In the end a message is displaying to the user outside of the application normal UI, in the

notification drawer of the Android device. This is done with a lot of helper classes like

NotificationManager.java, NotificationCompat.Builder.java and TaskStackBuilder.java.

Conclusions and Future work

 The use of Android and Google Cloud Technologies provides a very elegant solution

for this kind of problem. Most of the project is already done. In future, the 3-rd party server

will be created and the user interface will be enhanced. After that, this system will be test

extensively with a purpose to be published on the Google Play Store without bugs.

	1. Creating the model and designing the user interface
	2. Creating Content Provider and the XML parser
	3. Configuring Google Cloud Messaging Service
	4. Implementing Synchronization Adapter Framework

